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A. CURRENT DENSITY

The current operator reads in second quantization formalism j =
∑

λ′λkk′ Jλλ′

kk′a
†
λkaλ′k′ ,

with the current matrix Jλλ′

kk′ = e0
m0
〈λk|p|λ′k′〉 = e0~

mλ
kδkk′δλλ′ and the ladder operators a

(†)
λk

describing the annihilation (creation) of an electron at the band λ = v, c with momentum

k. The current density can be then written as 〈j〉 = A−1e0~
∑

λkm
−1
λ kfλk , where we have

defined the carrier occupation fλk = 〈a†λkaλk〉. One can introduce a unit operator [1, 2] to

express the carrier occupations f ek =
∑

k′ 〈P †kk′Pkk′〉 and fhk =
∑

k′ 〈P †k′kPk′k〉 in terms of

pair operators P †kk′ = a†ckavk′ , which in turn can be expanded in a basis of excitonic states,

P †kk′ =
∑

ν φ
ν
αhk+αek′X

ν†
k−k′ . Here Xν†

Q is the creation operator for an exciton at the ν-level

with center-of-mass momentum Q, φνk is the excitonic wavefunction with relative momentum

k fulfilling the Wannier equation [3], and αλ = mλ/(mh + me). Considering only diagonal

terms describing incoherent occupation of excitons, i.e. 〈Xν†
QX

µ
Q 〉 = 〈Xν†

QX
ν
Q 〉 δνµ, the

current density reads 〈j〉 = e0~m−1r
∑

νk k|φνk|2nν , with the reduced mass m−1r = m−1h +m−1e

and the exciton density nν = A−1
∑

Q 〈X
ν†
QX

ν
Q 〉. It is important here to distinguish between

free and bound excitonic states. The probability functions |φνk|2 for bound states are even,

and hence the integration over momentum with the even function k yields zero current. This

is not the case for continuum (free) states, which can be approximately described by plane

waves. Therefore the current only has contributions from excitonic states in the continuum
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(free electron-hole pairs): 〈j〉 = e0~m−1r
∑

kk′ k|ψk′

k |2nν , where the quantum number ν has

become a continuous momentum k′ and we have redefined the exciton wavefunction for

continuum states to ψk′

k . The current is thus governed by free electron-hole pairs.

B. ORTHOGONAL PLANE WAVES

Plane waves in momentum space are described by a delta function. We describe free

states as plane waves but note that the complete basis is also formed by bound states.

Hence we add a correction to the plane waves and obtain the so-called orthogonal plane

waves (OPWs)

ψp
k = Np

(
δpk −

Nb∑
ν

cνpφ
ν
k

)
, (B.1)

where Np is a normalization factor and cνp is an orthogonalization coefficient. In order for

free and bound states to be orthogonal, the following condition must be fulfilled:∑
k

ψp∗
k φ

ν
k = 0 =⇒ cνp = φν∗p . (B.2)

In a similar manner, we find the normalization factor,

∑
k

|ψp
k|

2
= 1 =⇒ Np =

(
1−

Nb∑
ν

∣∣φνp∣∣2
)− 1

2

. (B.3)

The contribution from the few bound states
∑Nb

ν

∣∣φνp∣∣2,is insignificant and hence can be

neglected. Another way to argue why this factor can be neglected is that
∣∣φνp∣∣2 ∝ 1

A
→ 0 for

A→∞. The final expression for the OPWs describing free states is

ψp
k = δpk −

Nb∑
ν

φν∗p φ
ν
k. (B.4)

C. OPTICAL EXCITATION AND RADIATIVE RECOMBINATION

An optical excitation first generates coherent excitons (also referred to as microscopic

polarization, pν = 〈Xν†
0 〉), which then either decay radiatively or are transferred into the

incoherent population N ν
Q via phonon scattering. Since we will focus on continuous wave

excitation, we will assume the temporal evolution of pν to be slow. In a rotating wave

approximation, we obtain

pν =
~Ων

Eν
0 − ~ω + i~γν

, (C.1)
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where ω is the frequency of the incident light, Ων
σ = i e0

~m0
M ν ·A(t) is the Rabi frequency [4],

with the excitonic optical matrix element M ν and the vector potential A(t) [5], and γν =

γνrad + 1
2

∑
µQ Γνµ0Q is the total dephasing [6]. We assume here circulary-polarized light for

optimal absorption and set M ν to match oscillator strengths extracted from experimental

absorption spectra [7]. Note that the difference between the calculated absorption values

that determine the EQE in the main manuscript and the ones reported in Ref. 7 is due to

different linewidths—in the experiment the linewidths might be larger due to disorder, while

our linewidths are in agreement with clean samples [6]. It is noteworthy to mention that

when one sums the optical absorption term in Eq. (2) over momentum and all excitonic states

one obtains ṅx = I
~ωα(ω), which can be intuitively understood as the exciton generation

corresponding to the photon flux weighted by the absorption profile.

Finally, the radiative decay can be determined by self-consistently solving the semicon-

ductor Bloch equation for the excitonic polarization and the Maxwell equations for the vector

potential A in a 2D geometry [6, 8, 9], obtaining the rate

γνrad =
e20|M ν · eσ|2

2m2
0ε0nc0E

ν
0

. (C.2)

Here we have defined the Jones vector eσ describing the polarization of the light and the

refractive index of the medium n.

D. RESPONSE TIME AND STATIONARY STATE

From our microscopic theory, we can set up a simple model for the macroscopic dynamics

in order to identify key parameters. Eq. (2) can be summed over Q and ν to obtain the

equation of motion for the exciton density ṅ = G− τ−1n, where G = I
~ωα(ω) is the optical

generation current, I the power density of the incident light, and τ the lifetime corresponding

to the sum of different decay times τ−1 =
∑

i τ
−1
i . The different decay mechanisms are

dissociation τ−1d = 1
nA

∑
νQ Γdiss

νQN
ν
Q, radiative recombination τ−1r = 1

nA

∑
ν 2δQ0γ

ν
radN

ν
Q, and

non-radiative recombination τnr. The solution to this equation of motion reads n(t) =

n(0)e−t/τ +Gτ(1− e−t/τ ). Here, we can identify the stationary solution n(∞) = Gτ and the

response time τ . Hence, the mechanism governing the stationary exciton density and the

response time τ will be the one with the shortest characteristic time τi.
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E. MODEL PARAMETERS

We assume a parabolic dispersion for each electronic valley and use ab-initio parameters

for the effective mass, lattice constant, valley energy offsets, and dielectric constants [10, 11].

We treat scattering with phonons in an effective deformation potential approach and use ab-

initio parameters for the phonon energies and deformation potentials, considering transversal

and longitudinal acoustic (TA, LA) and optical (TO, LO) modes, as well as the out-of-plane

A1 mode, in the Γ, K(’), Λ(’) and M(’) valleys [12]. In order to study the effect of strain, we

take parameters for the energetic shift of the electronic valleys from Ref. 13.

F. TRANSITION RATES

In Table I we list the values for the transition rates that are depicted in Fig. 2(c) in the

main manuscript.

KK1s KK2s KK’1s KK’2s KΛ1s KΛ2s KK’cont.

KK1s 0 5.3 · 10−2 1.4 4.2 · 10−2 6.3 9.4 · 10−2 3.6 · 10−2

KK2s −5.3 · 10−2 0 −9.5 · 10−3 −3.8 · 10−3 −4.2 · 10−2 −4.8 · 10−3 9.0 · 10−2

KK’1s -1.4 9.5 · 10−3 0 4.9 · 10−1 −4.2 · 10−2 1.7 2.6 · 10−2

KK’2s −4.2 · 10−2 3.8 · 10−3 −4.9 · 10−1 0 -3.5 3.3 2.8 · 10−1

KΛ1s -6.3 4.2 · 10−2 4.2 · 10−2 3.5 0 8.6 · 10−1 2.8

KΛ2s −9.4 · 10−2 4.8 · 10−2 -1.7 -3.3 −8.6 · 10−1 0 5.8

TABLE I. Transition rates Γνµ from excitonic states ν (rows) into other bound states µ (columns)

or the KK’ continuum (last column). The values are in units of cm−2ps−1. Only the main states

involved in the dynamics are included.
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