# Supplementary Information

## Self-driven microstructural evolution of Au@Pd core-shell nanoparticles for

### greatly enhanced catalytic performance during methanol electrooxidation

Yaxing Liu<sup>a,b\*</sup>, Weiyin Li<sup>c</sup>, Guizhe Zhao<sup>a,b</sup>, Gang Qin<sup>d</sup>, Yuexia Li<sup>b</sup> and Yaqing Liu<sup>a,b\*</sup>

<sup>a</sup> Shanxi Key Laboratory of Nano Functional Composite Materials, North University of China,

Taiyuan, 030051, P. R. China

<sup>b</sup> School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P.

R. China

<sup>c</sup> School of Electrical and Information Engineering, North Minzu University, Yinchuan, 750021,

P. R. China

<sup>d</sup> School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003,

P. R. China

#### \*Corresponding author:

#### Yaxing Liu

Shanxi Key Laboratory of Nano Functional Composite Materials, School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China

Email: yaxingliu@nuc.edu.cn

#### Yaqing Liu

Shanxi Key Laboratory of Nano Functional Composite Materials, School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China Email: lyg@nuc.edu.cn



Figure S1 Bright field TEM images and corresponding nanoparticle size distributions of the as-prepared Au@Pd\_Core-Shell (a,  $a_1$ ), Au–Pd\_Alloy (b,  $b_1$ ), Au nanoparticles (c,  $c_1$ ), Pd nanoparticles (d,  $d_1$ ), Pd/C-20<sub>wt</sub>% (e,  $e_1$ ), and Pt/C-20<sub>wt</sub>% (f,  $f_1$ ).



Figure S2 Microstructural characterization of the as-synthesized Pd NPs: (a) Bright and (b) dark field TEM images; (c) HR–TEM images; (d) selected-area inverse fast Fourier transform (IFFT) pattern of the region enclosed by the square in (c).





images; (c) HR–TEM image; (d) selected-area IFFT pattern of the region enclosed by the square in (c).



Figure S4 Microstructure characterization of the as-synthesized Au–Pd\_Alloy nanoparticles: (a) Bright and (b)

dark field TEM images; (c) HR–TEM image; (d) selected-area IFFT pattern enclosed by the square in (c).



Figure S5 Comparisons of X-ray diffraction (XRD) patterns of the as-prepared Au@Pd\_Core-Shell nanoparticles, Au–Pd\_Alloy, Au nanoparticles, and Pd nanoparticles. The insets present the details of the corresponding diffraction peaks. Bar diagrams: Pd #46-1043 and Au #04-0784.



Figure S6 Methanol electrooxidation performances of the as-synthesized Au NPs. The CV curves were recorded in an  $N_2$ -saturated 1.0 M KOH solution with 1.0 M CH<sub>3</sub>OH. The scan rate was 50 mV s<sup>-1</sup>.



Figure S7 Methanol electrooxidation performances of the as-prepared Au@Pd\_Core-Shell nanoparticles, Au–Pd\_Alloy, commercial Pd/C- $20_{wt}$ %, and commercial Pt/C- $20_{wt}$ % catalysts. The CV curves were recorded in N<sub>2</sub>-saturated 1.0 M KOH solution with 1.0 M CH<sub>3</sub>OH. The scan rate was 50 mV s<sup>-1</sup>.

| Sample                                                   | Current Density                 | Electrolyte                                             | References                                        |  |
|----------------------------------------------------------|---------------------------------|---------------------------------------------------------|---------------------------------------------------|--|
| Au@Au-Pd_Core-Shell                                      | 9.35<br>(A mg-1 Cat.)           | 1.0 М КОН + 1.0 М<br>СН <sub>3</sub> ОН                 | This work                                         |  |
| Au@Au-Pd_Core-Shell                                      | 10.9<br>(mA cm <sup>-2</sup> )  | 1.0 М КОН + 1.0 М<br>СН <sub>3</sub> ОН                 | This work                                         |  |
| $Pd_{41}Au_{59}$                                         | 6.52<br>(mA cm <sup>-2</sup> .) | 0.5 M NaOH + 2.0 M<br>CH₃OH                             | M Int. J. Hydrogen<br>Energy 2020, 45,<br>4444    |  |
| Pd-PdO PNTs-260                                          | 1.11<br>(A mg <sup>-1</sup> )   | 1.0 М КОН + 1.0 М<br>СН <sub>3</sub> ОН                 | Adv. Funct.<br>Mater. 2020,<br>2000534            |  |
| Au <sub>80</sub> @Pd <sub>20</sub> /C                    | 0.83<br>(A mg-1 Pd)             | 0.5 M KOH + 0.5 M<br>CH <sub>3</sub> CH <sub>2</sub> OH | Appl. Catal. B-<br>Environ. 2019,<br>251, 313     |  |
| Au@PdAg-NTs                                              | 3.5                             | 1.0 M KOH + 1.0 M                                       | RSC Adv., 2019, 9,                                |  |
|                                                          | (mA cm <sup>-2</sup> .)         | CH₃OH                                                   | 931                                               |  |
| 2D/1D Au/Pd                                              | 0.62<br>(A mg-1 Pd)             | 1.0 М КОН + 1.0 М<br>СН <sub>3</sub> СН <sub>2</sub> ОН | ACS Appl. Mater.<br>Interfaces 2019,<br>11, 20117 |  |
| PdNW@cCuO <sub>2</sub>                                   | 0.57                            | 1.0 М КОН + 1.0 М                                       | Small 2019,                                       |  |
|                                                          | (A mg-1 Pd)                     | СН <sub>3</sub> ОН                                      | 1904964                                           |  |
| Au-Pd alloy                                              | 2.81                            | 1.0 М КОН + 1.0 М                                       | J. Phys. Chem. C                                  |  |
|                                                          | (mA cm-2 Pd.)                   | СН <sub>3</sub> ОН                                      | 2018, 122, 21718                                  |  |
| HOH-shaped<br>Au@Au <sub>0.2</sub> Pd <sub>2.0</sub> NPs | 11.9<br>(A mg-1 Pd)             | 0.5 M KOH + 0.5 M<br>CH <sub>3</sub> CH <sub>2</sub> OH | J. Mater. Chem. A,<br>2018, 6,<br>7675            |  |
| PdAg NDs                                                 | 2.6                             | 1.0 М КОН + 1.0 М                                       | Adv. Mater. 2018,                                 |  |
|                                                          | (A mg-1 Pd)                     | СН <sub>3</sub> СН <sub>2</sub> ОН                      | 1706962                                           |  |
| Pd <sub>2</sub> Au-180                                   | 0.49                            | 1.0 M NaOH + 1.0 M                                      | Electrochim. Acta                                 |  |
|                                                          | (A mg-1 Pd)                     | CH₃OH                                                   | 2018, 259, 284                                    |  |
| $Pd_{40}Ni_{43}P_{17}$                                   | 4.95                            | 1.0 M NaOH + 1.0 M                                      | Nat. Commun.                                      |  |
|                                                          | (A mg-1 Pd)                     | CH <sub>3</sub> CH <sub>2</sub> OH                      | 2017, 8, 14136                                    |  |
| Au@Pd NRs                                                | 2.92                            | 1.0 M KOH + 1.0 M                                       | Adv. Mater. 2017,                                 |  |
|                                                          | (A mg-1 Pd)                     | CH <sub>3</sub> CH <sub>2</sub> OH                      | 29, 1701331                                       |  |
| core–shell Au–Pd                                         | 1.2                             | 1.0 M KOH + 0.5 M                                       | Nanoscale, 2017,                                  |  |
| nanodendrites                                            | (A mg-1 Pd)                     | CH <sub>3</sub> CH <sub>2</sub> OH                      | 9, 12494                                          |  |
| Pd <sub>67</sub> Au <sub>33</sub> /C                     | 129.85                          | 0.5  M NaOH + 1.0  M                                    | J. Power Sources                                  |  |
|                                                          | (mA cm <sup>-2</sup> .)         | CH <sub>3</sub> CH <sub>2</sub> OH                      | 2017, 361, 276                                    |  |
| Pd <sub>1</sub> Au <sub>1</sub> porous foam films        | 0.2723                          | 0.5 M KOH + 0.5 M                                       | Catal. Commun.                                    |  |
|                                                          | (mA cm <sup>-2</sup> .)         | CH₃OH                                                   | 2016, 73, 22                                      |  |

Table S1 Comparison of mass activities of Pd-based electrocatalysts reported in the literature.

| PdCuCo NCs/C-375℃                    | 7.72<br>(A mg-1 Pd)     | 1.0 M NaOH + 1.0 M<br>CH <sub>3</sub> CH <sub>2</sub> OH | Angew. Chem.<br>Int. Ed. 2016, 55,<br>1 |
|--------------------------------------|-------------------------|----------------------------------------------------------|-----------------------------------------|
| Pd <sub>30</sub> Au <sub>70</sub> /C | 0.95<br>(A mg-1 Pd)     | 1.0 М КОН + 1.0 М<br>СН <sub>3</sub> ОН                  | J. Mater. Chem. A,<br>2013, 1,<br>9157  |
| PdCuSn/CNTs                          | 0.40                    | 1.0 M KOH + 0.5 M                                        | J. Power Sources                        |
|                                      | (A mg-1 Pd)             | CH₃OH                                                    | 2013, 242, 610                          |
| NP-PdAu                              | 0.87                    | 0.5 M KOH + 1.0 M                                        | J. Alloy. Compd.                        |
|                                      | (A mg-1 Pd)             | CH <sub>3</sub> OH                                       | 2013, 565, 120                          |
| Au@Pd                                | 7.89                    | 1.0 M KOH + 0.5 M                                        | J. Catal. 2012,                         |
|                                      | (mA cm <sup>-2</sup> .) | CH₃OH                                                    | 295, 217                                |



Figure S8 Electrocatalytic activity of formate oxidation on the as-prepared Au@Pd\_Core-Shell nanoparticles. The CV curves were recorded in  $N_2$ -saturated 1.0 M KOH solution with various HCOOK concentrations. The scan rate was 50 mV s<sup>-1</sup>.



Figure S9 Microstructure characterization of the as-prepared Au@Pd\_Core-Shell nanoparticles. HAADF-STEM images of the nanoparticles at (a) before and (b) after the initial  $100^{th}$  successive CV cycling test for MOR. The EDS line scan of individual nanoparticle at (a<sub>1</sub>) before and (b<sub>1</sub>) after the initial  $100^{th}$  successive CV cycling test for MOR. The initial  $100^{th}$  successive CV cycling test was performed in a N<sub>2</sub>-saturated 1.0 M KOH solution with 1.0 M CH<sub>3</sub>OH at a scan rate of 50 mV s<sup>-1</sup>.



Figure S10 Results of the CST over 2000 CV cycles, collected at 10-scan intervals: (a) as-obtained Au@Au-Pd\_Core-Shell, (b) Au-Pd\_Alloy, (c) commercial Pd/C- $20_{wt}$ %, and (d) commercial Pt/C- $20_{wt}$ % catalysts. The CST was performed in an N<sub>2</sub>-saturated 1.0 M KOH solution with 1.0 M CH<sub>3</sub>OH. The scan rate was 50 mV s<sup>-1</sup>.



Figure S11 Electrocatalytic effect on the microstructure of the as-obtained Au@Au-Pd\_Core-Shell catalyst: HAADF–STEM images of the Au@Au-Pd\_Core-Shell nanoparticles (a) before and (a<sub>1</sub>) after the CST, and the corresponding EDS line scan of an individual nanoparticle (b) before and (b<sub>1</sub>) after the CST.

| Sample     | Au@Pd_Core-Shell | Au-Pd_Alloy | Au@Au-Pd_Core- | Au@Au-Pd_Core-Shell |
|------------|------------------|-------------|----------------|---------------------|
| Counts (%) |                  |             | Shell          | (After CST)         |
| Pd         | 28.44            | 51.13       | 18.45          | 18.01               |
| Au         | 71.56            | 48.87       | 81.55          | 81.99               |

Table S2 Atomic ratios of the Au and Pd components in the samples.



Figure S12 (a-b) Bright field TEM images and corresponding nanoparticle size distributions of the as-obtained





Figure S13 Electrochemical performances of the as-obtained Au@Au-Pd\_Core-Shell, Au-Pd\_Alloy, and commercial Pd/C- $20_{wt}$ % catalysts before and after the CST. The CV curves were recorded in N<sub>2</sub>-saturated 1.0 M KOH solution. The scan rate was 50 mV s<sup>-1</sup>.



Figure S14 CV curve of the commercial Pt/C- $20_{wt}$ % catalyst in N<sub>2</sub>-saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> solution before and after CST. The scan rate was 50 mV s<sup>-1</sup>.



Figure S15 Plots of MOR anodic peak current mass density versus cycle number in the (a) as-obtained Au@Au-Pd\_Core-Shell and (b) commercial Pd/C-20<sub>wt</sub>% catalysts. The electrolyte was refreshed at intervals of 100 CV cycles.



 $Figure \ S16 \ {\tt CO-Stripping} \ {\tt curves} \ of \ the \ as-prepared \ {\tt Au@Pd\_Core-Shell}, \ as-obtained \ {\tt Au@Au-Pd\_Core-Shell}, \ as-obtained \ {\tt Au}, \ a$ 

Au–Pd\_Alloy, Pd nanoparticles, Au nanoparticles, Pd/C-20<sub>wt</sub>%, and Pt/C-20<sub>wt</sub>%.