Supporting Information

Electrodeposition of $Ni_3Se_2/MoSe_x$ as a bifunctional electrocatalyst towards highly-efficient overall water splitting

Yifan Tian^{a+}, Xinying Xue^{b+}, Yu Gu^{a+}, Zhaoxi Yang^a, Guo Hong^c, Chundong Wang^{a}* ^aWuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

^bDepartment of Physics, College of Science, Shihezi University, Xinjiang, 832003, PR China

^cInstitute of Applied Physics and Materials Engineering, Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, PR China

⁺ Y.F.T., X.Y.X., and Y.G.: The authors contributed equally to this work.

^{*}E-mail address: apcdwang@hust.edu.cn (C. Wang)

Fig. S1. SEM images of $Ni_3Se_2(a-c)$ and $MoSe_x$ (d-f).

Fig. S2. EDX and ICP results of Ni_3Se_2 and Ni_3Se_2 /MoSe_x.

Fig. S3. XPS survey spectrum of $Ni_3Se_2/MoSe_x$. The inset shows the determined Ni, Mo and Se content in Ni3Se2/MoSe.

Fig. S4. CTTs curves of Ni₃Se₂, MoSe_x and Ni₃Se₂/MoSe_x at -0.8V versus Ag/AgCl.

Fig. S5. The cyclic voltammetry (CV) curves of Ni_3Se_2 and $Ni_3Se_2/MoSe_x$ in the range of -0.8 and -0.9 V (vs. Ag/AgCl) at different scan rates.

Fig. S6. The Chronopotentiometry measurement (potential vs time) of $Ni_3Se_2/MoSe_x$ at -10 mA cm⁻².

Fig. S7. The Chronopotentiometry measurement (potential vs time) of $Ni_3Se_2/MoSe_x$ at 10 mA cm⁻².

Electrocatalyst	Overpotential (mV) at 10 mA/cm ²	Tafel slope (mV/dec)	Electrolyte	References
Ni ₃ Se ₂ /MoSe _x	82	86.6	1.0 M KOH	Present work
Co-MoS ₂ /rGO ¹	147	49.5	1.0 M KOH	Ref. 1
ZnMoO ₄ /3D- AWC ²	124	54	1.0 M KOH	Ref. 2
Ni_5P_4 - Ru^3	123	56.7	1.0 M KOH	Ref. 3
NiFeO _x /CFP ⁴	88	150.2	1.0 M KOH	Ref. 4
Mo _x C-Ni@NCV ⁵	126	93	1.0 M KOH	Ref. 5
NiSe ⁶	96	120	1.0 M KOH	Ref. 6
NiMoN ⁷	109	95	1.0 M KOH	Ref. 7
NiSe ⁸	177	58.2	1.0 M KOH	Ref. 8
Ag ₂ S/MoS ₂ /RGO ⁹	190	56	1.0 M KOH	Ref. 9
Co(OH)2@Ni10	96	104.2	1.0 M KOH	Ref. 10

 Table S1. The HER activities of Ni-/Mo-involved electrocatalysts.

REFERENCES

- J. Ma, A. Cai, X. Guan, K. Li, W. Peng, X. Fan, G. Zhang, F. Zhang and Y. Li, *Int. J. Hydrogen Energ.*, 2020, 45, 9583–9591.
- 2 F. Han, S. Yun, J. Shi, Y. Zhang, Y. Si, C. Wang, N. Zafar, J. Li and X. Qiao, *Appl. Catal. B-Environ.*, 2020, 273, No. 119004.
- 3 Q. He, D. Tian, H. Jiang, D. Cao, S. Wei, D. Liu, P. Song, Y. Lin and L. Song, Adv. Mater., 2020, 32, 1906972.
- 4 H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. Commun.*, 2015, **6**, 7261.
- 5 S. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li and Y. Wang, J. Am. Chem. Soc., 2015, 137, 15753–15759.
- 6 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351–9355.
- 7 Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat and H. J. Fan, *Adv. Energy Mater.*, 2016, 6, 1600221.
- 8 H. Wu, X. Lu, G. Zheng and G. W. Ho, Adv. Energy Mater., 2018, 8, 1702704.
- 9 G. Solomon, R. Mazzaro, S. You, M. M. Natile, V. Morandi, I. Concina and A. Vomiero, ACS Appl. Mater. Interfaces, 2019, 11, 22380–22389.
- 10Z. Wang, S. Ji, F. Liu, H. Wang, X. Wang, Q. Wang, B. G. Pollet and R. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 29791–29798.