## SUPPORTING INFORMATION

# Facile synthesis of Cu catalysts with multiple high-index facets for the suppression of competing H<sub>2</sub> evolution during the electrocatalytic CO<sub>2</sub> reduction

Monday Philip,<sup>*a,b*</sup> Abebe Reda Woldu,<sup>*a,b,c*\*</sup> Bilal Akbar,<sup>*a,b*</sup> Hitler Louis,<sup>*a,b*</sup> Huang Cong,<sup>*a,b*</sup>

<sup>a</sup>CAS Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in

Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

<sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, China.

<sup>c</sup>Department of chemistry, college of science, Bahir Dar University, Bahir Dar 79, Ethiopia.



\*Corresponding Author: abebe.reda2@gmail.com

**Fig. S1** SEM images of different electrodes before CO<sub>2</sub>RR, a) P-Cu, b) P-Cu-200, c) P-Cu-400, d) P-Cu-600, e) P-Cu-800, and f) P-Cu-1000. Scale bar: 5.0 μm.



Fig. S2 Additional SEM images of different electrodes before  $CO_2RR$ , a) P-Cu, b) P-Cu-200, c) P-Cu-400, d) P-Cu-600, e) P-Cu-800, and f) P-Cu-1000. Scale bar: 1.0  $\mu$ m.





**Fig. S3** SEM images of different electrodes before CO<sub>2</sub>RR, a) P-Cu, b) P-Cu-200, c) P-Cu-400, d) P-Cu-600, e) P-Cu-800, f) P-Cu-1000; and after CO<sub>2</sub>RR, g) P-Cu, h) P-Cu-200, i) P-Cu-400, j) P-Cu-600, k) P-Cu-800, and l) P-Cu-1000. Scale bar: 10.0 μm.





**Fig. S4** XRD patterns of different electrodes before and after ECR. (a) P-P-Cu, (b) P-Cu-200, (c) P-Cu-400, (d) P-Cu-600, (e) P-Cu-800, and (f) P-Cu-1000.

| Color Coded Map Type: Crystal Direction |       |                  |     |     |                   |                       |  |  |  |
|-----------------------------------------|-------|------------------|-----|-----|-------------------|-----------------------|--|--|--|
| (a)                                     |       | Direction        | Min | Max | Total<br>Fraction | Partition<br>Fraction |  |  |  |
|                                         |       | <110>  [001]     | 0°  | 10° | 0.002             | 0.002                 |  |  |  |
|                                         |       | <1 1 1> [[0 0 1] | 0°  | 10° | 0.006             | 0.006                 |  |  |  |
|                                         |       | <100> [[001]     | 0°  | 10° | 0.036             | 0.036                 |  |  |  |
|                                         |       | <6 3 1> [[0 0 1] | 0°  | 10° | 0.108             | 0.108                 |  |  |  |
|                                         |       | <2 1 1> [[0 0 1] | 0°  | 10° | 0.021             | 0.021                 |  |  |  |
|                                         |       | <3 1 1> [[0 0 1] | 0°  | 10° | 0.087             | 0.087                 |  |  |  |
|                                         |       | <2 2 1> [[0 0 1] | 0°  | 10° | 0.057             | 0.057                 |  |  |  |
|                                         |       | <2 1 0> [[0 0 1] | 0°  | 10° | 0.042             | 0.042                 |  |  |  |
|                                         |       | <3 3 2> [[0 0 1] | 0°  | 10° | 0.027             | 0.027                 |  |  |  |
|                                         |       | <3 3 1> [[0 0 1] | 0°  | 10° | 0.060             | 0.060                 |  |  |  |
|                                         |       | <3 2 2> [[0 0 1] | 0°  | 10° | 0.012             | 0.012                 |  |  |  |
|                                         |       | <3 2 1> [[0 0 1] | 0°  | 10° | 0.046             | 0.046                 |  |  |  |
|                                         |       | <3 2 0> [[0 0 1] | 0°  | 10° | 0.046             | 0.046                 |  |  |  |
|                                         |       | <3 1 0> [[0 0 1] | 0°  | 10° | 0.125             | 0.125                 |  |  |  |
|                                         |       | <4 4 1> [[0 0 1] | 0°  | 10° | 0.024             | 0.024                 |  |  |  |
|                                         |       | <4 3 3> [[0 0 1] | 0°  | 10° | 0.020             | 0.020                 |  |  |  |
|                                         |       | <4 3 2> [[0 0 1] | 0°  | 10° | 0.073             | 0.073                 |  |  |  |
|                                         |       | <4 3 1> [[0 0 1] | 0*  | 10° | 0.079             | 0.079                 |  |  |  |
|                                         |       | <4 3 0> [[0 0 1] | 0°  | 10° | 0.052             | 0.052                 |  |  |  |
|                                         |       | <4 2 1>110 0 11  | 0*  | 10° | 0.067             | 0.067                 |  |  |  |
| 60 um                                   | Conne |                  |     |     |                   |                       |  |  |  |



|                  |     |     | Total    | Partition |
|------------------|-----|-----|----------|-----------|
| Direction        | Min | Max | Fraction | Fraction  |
| <110>  [001]     | 0°  | 10° | 0.020    | 0.020     |
| <1 1 1>  [0 0 1] | 0°  | 10° | 0.000    | 0.000     |
| <100>  [001]     | 0°  | 10° | 0.088    | 0.088     |
| <6 3 1>  [0 0 1] | 0°  | 10° | 0.085    | 0.085     |
| <2 1 1>  [0 0 1] | 0°  | 10° | 0.115    | 0.115     |
| <3 1 1>  [0 0 1] | 0°  | 10° | 0.107    | 0.107     |
| <2 2 1> [[0 0 1] | 0*  | 10° | 0.013    | 0.013     |
| <2 1 0>  [0 0 1] | 0°  | 10° | 0.022    | 0.022     |
| <3 3 2>  [0 0 1] | 0°  | 10° | 0.002    | 0.002     |
| <3 3 1>  [0 0 1] | 0*  | 10° | 0.021    | 0.021     |
| <3 2 2>  [0 0 1] | 0°  | 10° | 0.012    | 0.012     |
| <3 2 1> [[0 0 1] | 0°  | 10° | 0.050    | 0.050     |
| <3 2 0>  [0 0 1] | 0°  | 10° | 0.048    | 0.048     |
| <3 1 0>  [0 0 1] | 0°  | 10° | 0.078    | 0.078     |
| <4 4 1>  [0 0 1] | 0°  | 10° | 0.023    | 0.023     |
| <4 3 3>  [0 0 1] | 0°  | 10° | 0.001    | 0.001     |
| <4 3 2> [[0 0 1] | 0°  | 10° | 0.030    | 0.030     |
| <4 3 1> [[0 0 1] | 0°  | 10° | 0.129    | 0.129     |
| <4 3 0>  [0 0 1] | 0°  | 10° | 0.058    | 0.058     |
| <4 2 1>  [0 0 1] | 0*  | 10° | 0.087    | 0.087     |

Color Coded Map Type: Crystal Direction 

| (d)<br>0 0 1 10 1<br>0 0 um | Color C |
|-----------------------------|---------|

|         |                  |     |     | Total    | Partition |
|---------|------------------|-----|-----|----------|-----------|
|         | Direction        | Min | Max | Fraction | Fraction  |
|         | <1 1 0>  [0 0 1] | 0°  | 10° | 0.033    | 0.033     |
|         | <1 1 1>  [0 0 1] | 0°  | 10° | 0.000    | 0.000     |
|         | <100>  [001]     | 0°  | 10° | 0.003    | 0.003     |
|         | <6 3 1>  [0 0 1] | 0°  | 10° | 0.102    | 0.102     |
|         | <2 1 1>  [0 0 1] | 0°  | 10° | 0.112    | 0.112     |
| 20 - 21 | <3 1 1>  [0 0 1] | 0°  | 10° | 0.198    | 0.198     |
|         | <2 2 1>  [0 0 1] | 0°  | 10° | 0.008    | 0.008     |
|         | <2 1 0>  [0 0 1] | 0°  | 10° | 0.002    | 0.002     |
|         | <3 3 2>  [0 0 1] | 0*  | 10° | 0.008    | 0.008     |
|         | <3 3 1>  [0 0 1] | 0°  | 10° | 0.001    | 0.001     |
|         | <3 2 2>  [0 0 1] | 0°  | 10° | 0.136    | 0.136     |
|         | <3 2 1>  [0 0 1] | 0°  | 10° | 0.018    | 0.018     |
|         | <3 2 0>  [0 0 1] | 0°  | 10° | 0.133    | 0.133     |
|         | <3 1 0>  [0 0 1] | 0°  | 10° | 0.082    | 0.082     |
|         | <4 4 1>  [0 0 1] | 0°  | 10° | 0.025    | 0.025     |
|         | <4 3 3> [[0 0 1] | 0°  | 10° | 0.005    | 0.005     |
|         | <4 3 2>  [0 0 1] | 0°  | 10° | 0.009    | 0.009     |
|         | <4 3 1>  [0 0 1] | 0°  | 10° | 0.117    | 0.117     |
|         | <4 3 0>  [0 0 1] | 0°  | 10° | 0.006    | 0.006     |
|         | <4 2 1>  [0 0 1] | 0°  | 10° | 0.003    | 0.003     |
| Coppe   | er               |     |     |          |           |

Color Coded Map Type: Crystal Direction

|                 |       |     | Total    | Partition |
|-----------------|-------|-----|----------|-----------|
| Direction       | Min   | Max | Fraction | Fraction  |
| <1 1 0>  [0 0 * | 1] 0° | 10° | 0.003    | 0.003     |
| <1 1 1>  [0 0 * | 1] 0° | 10° | 0.000    | 0.000     |
| <100>  [00      | 1] 0° | 10° | 0.029    | 0.029     |
| <6 3 1>  [0 0 1 | 1] 0° | 10° | 0.011    | 0.011     |
| <2 1 1>  [0 0 * | 1] 0° | 10° | 0.002    | 0.002     |
| <3 1 1>  [0 0 * | 1] 0° | 10° | 0.027    | 0.027     |
| <2 2 1>  [0 0 * | 1] 0° | 10° | 0.013    | 0.013     |
| <2 1 0>  [0 0 * | 1] 0° | 10° | 0.528    | 0.528     |
| <3 3 2>  [0 0 * | 1] 0° | 10° | 0.001    | 0.001     |
| <3 3 1>  [0 0 * | 1] 0° | 10° | 0.001    | 0.001     |
| <3 2 2>  [0 0 * | 1] 0° | 10° | 0.000    | 0.000     |
| <3 2 1>  [0 0 * | 1] 0° | 10° | 0.005    | 0.005     |
| <3 2 0>  [0 0 * | 1] 0° | 10° | 0.012    | 0.012     |
| <3 1 0>  [0 0 * | 1] 0° | 10° | 0.007    | 0.007     |
| <4 4 1>  [0 0 * | 1] 0° | 10° | 0.004    | 0.004     |
| <4 3 3>  [0 0 * | 1] 0° | 10° | 0.012    | 0.012     |
| <4 3 2>  [0 0 * | 1] 0° | 10° | 0.029    | 0.029     |
| <4 3 1>  [0 0 * | 1] 0° | 10° | 0.243    | 0.243     |
| <4 3 0>110 0    | 1] 0° | 10° | 0.057    | 0.057     |
| <4 2 1>  [0 0 1 | 1] 0° | 10° | 0.017    | 0.017     |
| Copper          |       |     |          |           |



**Fig. S5.** Crystal orientation of as-prepared electrodes. (a) P-P-Cu, (b) P-Cu-200, (c) P-Cu-400, (d) P-Cu-600, (e) P-Cu-800, and (f) P-Cu-1000. Scale bar: 60 μm.

**Table S1.** Data for total grain boundaries distributions

| S/No. | Catalyst  | Total Grain Boundaries |
|-------|-----------|------------------------|
| 1     | P-P-Cu    | 65168                  |
| 2     | P-Cu-200  | 54005                  |
| 3     | P-Cu-400  | 15043                  |
| 4     | P-Cu-600  | 10227                  |
| 5     | P-Cu-800  | 3833                   |
| 6     | P-Cu-1000 | 2402                   |

| S/No. | Catalysts | Average Grain | Standard        | Average Grain | Standard         |
|-------|-----------|---------------|-----------------|---------------|------------------|
|       |           | Size at 5°    | Deviation at 5° | Size at       | Deviation at 15° |
|       |           | Tolerance     | Tolerance       | 15°Tolerance  | Tolerance Angle  |
|       |           | Angle         | Angle           | Angle         |                  |
| 1     | P-P-Cu    | 4.66          | 4.48            | 4.64          | 4.76             |
| 2     | P-Cu-200  | 4.64          | 4.25            | 4.70          | 4.54             |
| 3     | P-Cu-400  | 7.58          | 8.61            | 7.72          | 8.90             |
| 4     | P-Cu-600  | 11.01         | 15.96           | 10.82         | 16.55            |
| 5     | P-Cu-800  | 17.91         | 28.92           | 17.27         | 28.53            |
| 6     | P-Cu-1000 | 42.75         | 44.87           | 34.41         | 43.30            |

**Table S2.** Data for grain size variation across the electrodes in microns.



**Fig. S6** a) Total grain boundaries distribution across different electrodes, and b) Grain size variation across different electrodes at 5° and 15° angle of tolerance.

#### **Electrochemical CO<sub>2</sub> Reduction**

The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) was performed in a three-electrodes-onecompartment reactor containing a 50 mL solution of 0.1 M KHCO<sub>3</sub> solution (pH 8.5) with Pt counter electrode and Ag/AgCl as the Reference electrode. 1.5 cm x 1.3 cm of the working electrode was dipped in the electrolyte during the CO<sub>2</sub>RR. The electrolyte was vacuumed three times to remove dissolved gasses and then purged continuously with CO<sub>2</sub> for 30 minutes before each experiment to attain CO<sub>2</sub> saturated electrolyte. The CO<sub>2</sub>RR was carried out in the CO<sub>2</sub>-Saturated 0.1 M KHCO<sub>3</sub> (pH 6.8) solution at a constant bias of -1.0 V vs RHE, applied to the cathode using an electrochemical workstation (CHI 660D) over 4 hours period after which the current was measured as a function of time. During the CO<sub>2</sub>RR process, the products in the gas phase (i.e. H<sub>2</sub>, CO, and CH<sub>4</sub>) were quantified with a gas chromatography-mass spectrometer (SHIMADZU, GCMS-DP2020) equipped with a barrier discharge ionization detector (BID-2010 plus) at every one hour for the Cu working electrodes. Ultrahigh purity helium (99.999%) was used as the carrier gas. However, this system cannot detect multicarbon gaseous products, such as C<sub>2</sub>H<sub>4</sub>.

After 4 hours of CO<sub>2</sub>RR, the liquid products were detected by measuring out 665  $\mu$ L of the electrolyte solution and mixed with 70  $\mu$ L of 5 mM DMSO solution prepared in D<sub>2</sub>O in glass vile and transferred into an NMR tube for NMR measurement. To determine the liquid product, <sup>1</sup>HNMR measurement was conducted using Bruker 400MHz NMR Spectrometer (Avance III) with water suppression. The product was elucidated using the MestReNova software.

The liquid products were quantified using the relative method which is based on standard calibration curve as reported elsewhere. <sup>1–3</sup> The standard concentration of formate and methanol were prepared and analyzed using the same instrument mentioned above. The Standard calibration curves (Fig. S4) were plotted from which the concentration of the liquid product was obtained. Fig. S5 shows the NMR spectrum of a liquid product obtained from electrolyte collected after  $CO_2RR$  for each of our electrodes. We also performed blank measurements, where we only analyze the

electrolyte solution without any performing electrolysis, in other to ascertain if our product is actually the result of the electrolysis or the result of contaminations. The blank solution which is made up of 0.1 M KHCO<sub>3</sub> was prepared in the same way as the ones after electrolysis i.e., by mixing 665  $\mu$ L of 0.1 M KHCO<sub>3</sub> with 70  $\mu$ L of 5 mM DMSO solution prepared in D<sub>2</sub>O. For the blank solution NMR measurement, we obtained 2 singlet peaks around the DMSO peak around 2.79 ppm and 2.44 ppm, which correspond to the Dimethylformamide (DMF) and Dimthylacetamide (DMA), respectively (Fig. S5a). <sup>4</sup> These two peaks continued to appear around DMSO peak region during the analysis of the electrolytes after electrolysis on the electrodes, suggesting that these two peaks at 2.79 and 2.44 belong to the impurities from the as-prepared electrolyte solution. These measurements were conducted at room temperature. In addition to the gaseous product detected (H<sub>2</sub>, CO, and CH<sub>4</sub>), we also observed a singlet at 8.33 ppm corresponding to formate and another singlet at 3.23 corresponding to methanol for the solutions collected after CO<sub>2</sub>RR (See **Table S3**, and **Fig. S6**), although Methanol was not observed in P-Cu-600, P-Cu-800, and P-Cu-1000 solution.

#### **Faradaic efficiency (FE)**

This is the fraction of electricity driving the formation of a particular product during steadystate electrolysis. It represents the selectivity of the products during the  $CO_2RR$  process. In this study, the faradaic efficiency was calculated by the following equations (eqn. 1 for the liquid product <sup>5</sup> and eqn. 2 for gaseous products <sup>6</sup>):

$$FE_{x} = \frac{(c_{p} \times V_{cell} \times n_{p} \times F)}{Q_{Total}}$$
(1)  
$$(c_{p} \times n_{p} \times F)$$

$$FE_x = \boxed{Q_{Total}}$$
(2)

 $c_p$  = concentration of product (in mol)

 $n_p$  = number of electrons transferred to reduce CO<sub>2</sub> to product (x)

F = Faradaic Constant (96485 Cmol<sup>-1</sup>)

 $Q_{total}$  = Total Charge (in C) obtained by integrating all the current (A) and the corresponding time (secs.).

 $V_{cell}$  = the electrolyte volume in the electrochemical cell in L

## **Current Density**

This is calculated by dividing the total current by the geometric or total surface area of the electrode that was dipped into the electrolyte solution (1.5 cm x 1.3 cm = 1.95 cm<sup>2</sup>). It also represents the total current density for the CO<sub>2</sub>RR. There is a significant relationship between the total current density with the rate of CO<sub>2</sub> transformation. It is a key indicator of the cell's performance.













Fig. S8 NMR spectra of liquid products: a) blank, b) P-Cu, c) P-Cu-200, d) P-Cu-400, e) P-Cu-600, f) P-Cu-800, and g) P-Cu-1000.



**Fig. S9** Faradaic efficiency of a) gaseous and b) liquid products over the different Cu electrodes at - 1.0 V vs RHE quantified after 4 h electrolysis.

| Catalyst  | H <sub>2</sub> | СО   | CH <sub>4</sub> | HCOO- | CH <sub>3</sub> OH |
|-----------|----------------|------|-----------------|-------|--------------------|
| P-P-Cu    | 34.23          | 1.63 | 0.097           | 25.58 | 2.27               |
| P-Cu-200  | 31.64          | 1.52 | 0.040           | 23.69 | 2.99               |
| P-Cu-400  | 25.71          | 1.03 | 0.032           | 22.92 | 1.81               |
| P-Cu-600  | 17.15          | 1.86 | 0.050           | 0.27  | ND                 |
| P-Cu-800  | 13.55          | 1.95 | 0.064           | 0.17  | ND                 |
| P-Cu-1000 | 11.47          | 1.39 | 0.090           | 0.31  | ND                 |

**Table S3.** Product rate ( $\mu$ mol cm<sup>-2</sup> h<sup>-1</sup>) (ND= Not Detected)

**Table S4.** Yield ( $\mu$ mol cm<sup>-2</sup>) and Faradaic efficiencies over selected Cu electrodes (ND= Not Detected)

| Catalyst  | H <sub>2</sub> |            | СО      |        | $\mathrm{CH}_4$ |        | HCOO-       |           | CH <sub>3</sub> OH |           |
|-----------|----------------|------------|---------|--------|-----------------|--------|-------------|-----------|--------------------|-----------|
|           | Yield          | FE         | Yield   | FE     | Yield           | FE     | Yield       | FE        | Yield              | FE        |
| P-P-Cu    | 234.5±3        | 54.33±     | 11.9±0. | 2.79±0 | 0.6±0.          | 0.54±0 | 198.7±      | 2.35±     | 16.45±1            | 0.58±     |
|           | 2.54           | 0.2        | 84      | .19    | 17              | .08    | 0.8         | 0.31      | .25                | 0.04      |
| P-Cu-200  | 242.32±        | $53.25\pm$ | 11.62±  | 2.56±0 | 0.35±0          | 0.31±0 | 171.88      | 1.89±     | 18.91±4            | $0.63\pm$ |
|           | 4.5            | 1.25       | 0.23    | .07    | .04             | .03    | $\pm 12.88$ | 0.15      | .39                | 0.15      |
| P-Cu-800  | $104.26\pm$    | 35.54±     | 21.42±  | 7.2±1. | 0.43±0          | 0.41±0 | 2.16±0      | $0.03\pm$ | ND                 | ND        |
|           | 1.46           | 2.31       | 6.18    | 74     | .07             | .05    | .31         | 0.01      |                    |           |
| P-Cu-1000 | 71.79±1        | 24.41±     | 8.28±2. | 2.07±0 | $0.78 \pm 0$    | 0.79±0 | 2.5±0.      | $0.04\pm$ | ND                 | ND        |
|           | 7.65           | 6.41       | 55      | .19    | .08             | .07    | 05          | 0.0       |                    |           |

# References

- 1 D. Raciti, K. J. Livi and C. Wang, Nano. Lett. 2015, 15, 6829-6835.
- K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, *Energy Environ. Sci.* 2012, 5, 7050– 7059.
- 3 U. Holzgrabe, Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 229–240.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, R. Gan and H. Apiezon, *Organometallics* 2010, 29, 2176–2179.