Supplementary Information to “A visible light-triggered artificial photonic nociceptor with adaptive tunability of threshold”

Guodong Gong,a,b,c Shuang Gao,*a,b Zhuolin Xie,a,b,c Xiaoyu Ye,a,b,c Ying Lu,a,b,c Huali Yang,a,b Xiaojian Zhu,a,b and Run-Wei Li*a,b

aCAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. E-mail: gaoshuang@nimte.ac.cn, runweili@nimte.ac.cn

bZhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

cCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Fig. S1 XRD spectrum of the CeO\textsubscript{2-x} thin film deposited on a glass substrate.
Fig. S2 Surface morphology of the CeO$_{2-x}$ thin film.
Fig. S3 Photocurrent response of the device under different read voltages but a fixed green optical intensity of 90 pW/μm². The inset shows the magnified current relaxation processes after removal of the optical irradiation.
Fig. S4 Photocurrent response of the device to multiple green optical pulses with the intensities of 5 (a) and 11 (b) pW/μm². Pulse width, 0.2 s.
Fig. S5 Schematic mechanism for the relaxation process of the device. After the removal of optical irradiation, the re-trapped free electrons can be gradually detrapped from the shallow oxygen vacancies due to metastability, thus generating a notable relaxation current.
Fig. S6 Raw data for demonstrating the allodynia and hyperalgesia characteristics in Fig. 4d. (a-f) The damaging illumination intensity is 110 pW/μm². (g-j) The damaging illumination intensity is 130 pW/μm².
Fig. S7. Photocurrent response of the device under different read voltages of (a) 0.2 V, (b) –0.1 V, and (c) –0.2 V. Light color, green; pulse width, 3.6 s; light intensity, 0.5 to 11 pW/μm².