Supplementary Information to "A visible light-triggered artificial photonic nociceptor with adaptive tunability of threshold"

Guodong Gong,^{a,b,c} Shuang Gao,^{*a,b} Zhuolin Xie,^{a,b,c} Xiaoyu Ye,^{a,b,c} Ying Lu,^{a,b,c} Huali Yang,^{a,b} Xiaojian Zhu,^{a,b} and Run-Wei Li^{*a,b}

^aCAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. Email: gaoshuang@nimte.ac.cn, runweili@nimte.ac.cn

^bZhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

^cCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Fig. S1 XRD spectrum of the CeO_{2-x} thin film deposited on a glass substrate.

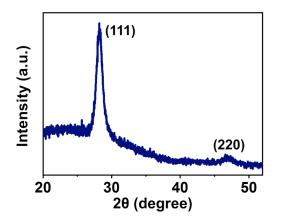


Fig. S2 Surface morphology of the CeO_{2-x} thin film.

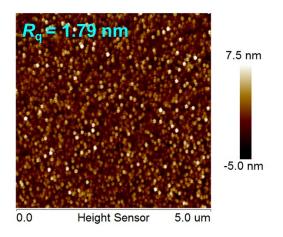
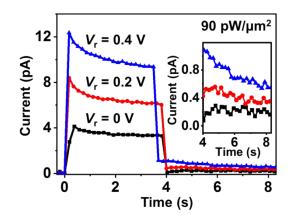
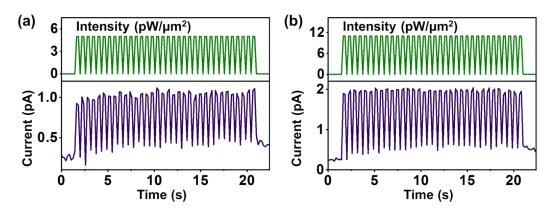
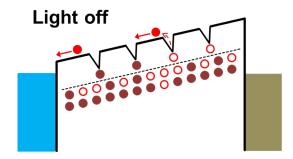
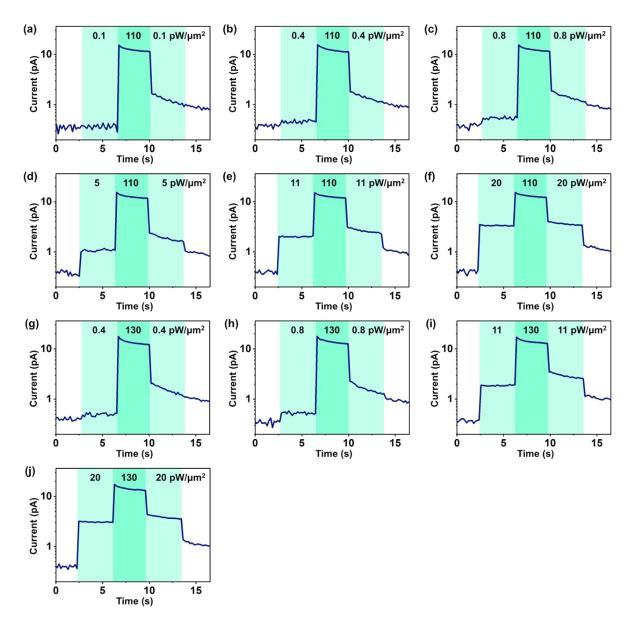


Fig. S3 Photocurrent response of the device under different read voltages but a fixed green optical intensity of 90 pW/ μ m². The inset shows the magnified current relaxation processes after removal of the optical irradiation.


Fig. S4 Photocurrent response of the device to multiple green optical pulses with the intensities of 5 (a) and 11 (b) $pW/\mu m^2$. Pulse width, 0.2 s.

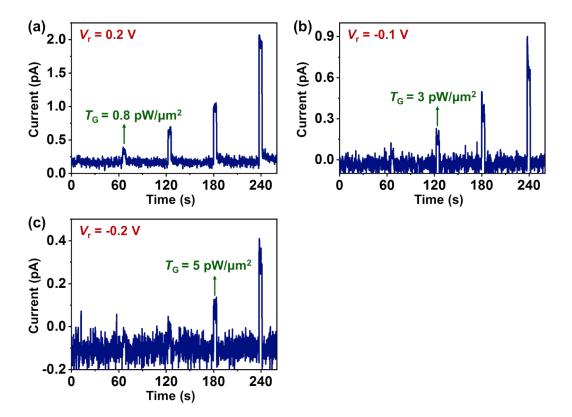

Fig. S5 Schematic mechanism for the relaxation process of the device. After the removal of optical irradiation, the re-trapped free electrons can be gradually detrapped from the shallow oxygen vacancies due to metastability, thus generating a notable relaxation current.

Fig. S6 Raw data for demonstrating the allodynia and hyperalgesia characteristics in Fig. 4d. (a-f) The damaging illumination intensity is $110 \text{ pW}/\mu\text{m}^2$. (g-j) The damaging illumination intensity is $130 \text{ pW}/\mu\text{m}^2$.

Fig. S7. Photocurrent response of the device under different read voltages of (a) 0.2 V, (b) -0.1 V, and (c) -0.2 V. Light color, green; pluse width, 3.6 s; light intensity, 0.5 to 11 pW/ μ m².

