Development of stretchable metallic glass electrodes

Haijie Xian^{1,2}, Lichao Li^{1,3}, Ping Wen^{1,2}, Haiyang Bai^{1,2,3,*}, and Weihua Wang^{1,2,3,4,*} Yanhui Liu^{1,2,3,4,*}

¹ Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

² Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

³ Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

⁴ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Figure S1 Change of electrical resistance with applied strain for biaxial MG-electrode after stretching-unstretching cycles and immersion in 1.5 mol/L NaOH solution for 24 hours.

Figure S2 AFM image (a) and AFM cross-section profile (b) of the uniaxial MGelectrode with healing layer. SEM image (c) and reconstructed height map image (d) of the biaxial MG-electrode.

Figure S3 (a) Change of resistance with applied strain for $Pd_{81}Si_{19}$ flat MG film (inset) and $Pd_{81}Si_{19}$ MG-electrode achieved by biaxial folding. (b) SEM images of $Fe_{78}Si_9B_{13}$ metallic glass wrinkle structures achieved by uniaxial and biaxial folding.

Figure S4 Electrical resistance change with stretching strain for biaxial MG-electrode after immersion in 1.5 mol/L NaOH solution for 24 hours.

Table S1 Summary of electronic performance of reported stretchable electrodes.

Conductive materials	Conductivity (S/cm)	Resistance change at	Transparency	
		15%	(Yes/No)	Reference
		stretching	(
		strain (%)		
Ag nanoparticles and	3012	115.1%		
graphene oxide	2600	73.3%	No	[1]
Ag nanoflowers	4000	344%	No	[2]
A	4018	14.5%	No	[3]
Agnanownes	1500	12%		
A = ==14=	22000	275%	No	[4]
Ag salts	7040	260%		
Ag flakes	542	10.5%	No	[5]
	38800	20.8%	No	[6]
Ag-Au nanowires	69400	27%		
	41850	16.4%		
Au nanoparticles	16000	128%	No	[7]
	170000	126%		
Au non-amortial as	11000	53.6%	Na	[8]
Au nanoparticles	1800	189.3%	INO	
Carbon nanotube and silver	5710	280.6%	No	[9]
Poly(3,4-ethylenedioxythio- phene) PEDOT	40	30%	No	[10]
PEDOT and graphene oxide	1010	670%	Yes	[11]
Carbon nanotube	0.83	1%	Yes No	[12]
	1.08	0.5%		
Carbon nanotube	2000	12.5%	Yes	[13]
Carbon nanotube	1	5%	No	[14]
Carbon nanotube	10	3%	No	[15]
Poly(3-butylthiophene-2,5- diyl) P3BT	0.0022	2%	Yes	[16]
	0.0022	16%		
	4.002	Almost no change (0.001%)		
Carbon nanotube	342	2.55%	No	[17]
Graphene	1800	50%	Yes	[18]
Graphene foam	10	7.5%	Yes	[19]
Graphene	5000	8.1%	Yes	[20]
Ag nanoparticles	5400	6%	No	[21]
Graphene	16000	25%	Yes	[22]
Ag nanoparticles	4919	96.8%	No	[23]
	3727	101.7%		

Ag nanowires	46700	174.7%	No	[24]
	40000	100%		
Au-TiO ₂ nanowires	16000	100%	No	[25]
Cu–Ag nanowires	1220	3.6%	No	[26]
Ag flakes	738	27.2%	No	[27]
Carbon nanotube	57	42.5%	No	[28]
poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)	0.127	4%	No	[29]
Au nanosheets	1667 10000 15385	5.4% 30% 30%	No	[30]
Au nanomeshes	18868	6.9%	No	[31]
Uniaxial MG-Electrode	108	2.3%	Yes	This work
Biaxial MG-Electrode	1014	4.3%	No	This work

Reference

- Y. Yoon, K. Samanta, H. Lee, K. Lee, A. P. Tiwari, J. Lee, J. Yang and H. Lee, Scientific reports, 2015, 5, 14177.
- [2] R. Ma, B. Kang, S. Cho and S. Baik, *ACS nano*, 2015, **9**, 10876–10886.
- [3] Y. Cheng, R. Wang, J. Sun and L. Gao, ACS nano, 2015, 9, 3887-3895.
- [4] M. Hu, X. Cai, Q. Guo, B. Bian, T. Zhang and J. Yang, ACS nano, 2016, 10, 396-404.
- [5] S. H. Kim, S. Jung, I. S. Yoon, C. Lee and Y. Oh, *Advanced materials*, 2018, 30, 1800109.
- [6] S. Choi, S. I. Han, D. J. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S.-W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon and D.-H. Kim, *Nature nanotechnology*, 2018, 13, 1048-1056.
- [7] S. Lee, Y. Song, Y. Ko, Y. Ko, J. Ko, C. H. Kwon, J. Huh, S. W. Kim, B. Yeom and J. Cho, *Advanced materials*, 2019, 1906460
- [8] Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J. G. Kim, S. J. Yoo, C. Uher

and N. A. Kotov, Nature, 2013, 500, 59-63.

- [9] K. Y. Chun, Y. Oh, J. Rho, J. H. Ahn, Y. J. Kim, H. R. Choi and S. Baik, *Nature nanotechnology*, 2010, 5, 853-857.
- [10] M. Sasaki, B. C. Karikkineth, K. Nagamine, H. Kaji, K. Torimitsu, M. Nishizawa, Advanced Healthcare Materials, 2014, 201400209.
- [11] Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn and N. E. Lee, *J Mater Chem*, 2012, 22, 23759-23766.
- [12] K. H. Kim, M. Vural and M. F. Islam, Advanced materials, 2011, 23, 2865-2869.
- [13] L. Cai, J. Z. Li, P. S. Luan, H. B. Dong, D. Zhao, Q. Zhang, X. Zhang, M. Tu, Q. S. Zeng, W. Y. Zhou and S. S. Xie, *Advanced Functional Materials*, 2012, 22, 5238-5244.
- [14] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim and R. H. Baughman, Advanced materials, 2010, 22, 2663-2667.
- [15] L. Lin, S. Liu, S. Fu, S. Zhang, H. Deng and Q. Fu, *Small*, 2013, 9, 3620-3629.
- [16] Y. S. Guan, Z. Zhang, Y. Tang, J. Yin and S. Ren, *Advanced materials*, 2018, 30, e1706390.
- [17] W. Weng, Q. Sun, Y. Zhang, S. He, Q. Wu, J. Deng, X. Fang, G. Guan, J. Ren and H. Peng, *Advanced materials*, 2015, 27, 1363-1369.
- [18] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, *Nature*, 2009, 457, 706-710.
- [19] Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H. M. Cheng, *Nature materials*, 2011, 10, 424-428.
- [20] N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W. G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair and Z. Bao, *Science advances*, 2017, 3, e1700159.
- M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. B. Shim, S. Jeon,
 D. Y. Chung, J. Bae, J. Park, U. Jeong and K. Kim, *Nature nanotechnology*, 2012, 7, 803-809.
- [22] J. Y. Hong, W. Kim, D. Choi, J. Kong and H. S. Park, ACS nano, 2016, 10, 9446-9455.

- [23] Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume and T. Someya, *Nature materials*, 2017, 16, 834-840.
- [24] J. Liang, K. Tong and Q. Pei, Advanced materials, 2016, 28, 5986-5996.
- [25] K. Tybrandt, D. Khodagholy, B. Dielacher, F. Stauffer, A. F. Renz, G. Buzsaki and J. Voros, *Advanced materials*, 2018, **30**, 1706520.
- [26] M. J. Catenacci, C. Reyes, M. A. Cruz and B. J. Wiley, ACS nano, 2018, 12, 3689-3698.
- [27] N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani and T. Someya, *Nature communications*, 2015, 6, 7461.
- [28] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, *Science*, 2008, **321**, 1468-1472.
- [29] V. R. Feig, H. Tran, M. Lee and Z. Bao Nature communications, 2018, 9, 2740
- [30] G. D. Moon, G. H. Lim, J. H. Song, M. Shin, T. Yu, B. Lim and U. Jeong, *Advanced materials*, 2013, 25, 2707-2712.
- [31] A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai and T. Someya, *Nature nanotechnology*, 2017, 12, 907-913.