Supporting Information

Oxygenated functional group-engaged electroless deposition of ligand-free sliver nanoparticles on porous carbon for efficient electrochemical non-enzymatic H_2O_2 detection

Qian Chen,^a Lingxi Zhou,^b Weidong Jiang, ^{c,*} and Guangyin Fan^{a,*}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu
610068, China.

^b State Key Laboratory of New Ceramics and Fine Processing, School of Materials

Science and Engineering, Tsinghua University, Beijing 100084, China.

^c School of Chemistry and Environmental Engineering, Sichuan University of Science
& Engineering, Zigong 643000, China.

* Corresponding author

Email: jwdxb@suse.edu.cn (W.D. Jiang); fanguangyin@sicnu.edu.cn (G.Y. Fan).

The file includes Experimental Section, Figs. S1-S15 and Tables S1-S4.

Chemical and materials

Potassium citrate (C₆H₅K₃O₇), sodium chloride (NaCl), fructose (Fru), urea (Urea), uric acid (UA), ascorbic acid (AA), sucrose (Suc) and silver nitrate (AgNO₃) were obtained from Aladdin Industrial Inc., China. Nafion (5 wt%) was supplied by Sigma-Aldrich. Graphene oxide was purchased from Nanjing XFNANO Materials Tech Co., Ltd. K₂HPO₄·3H₂O, KH₂PO₄·3H₂O, and H₂O₂ were purchased from Chengdu Kelong Reagent Co., Ltd. Different kinds of milk, including Mengniu/250 mL (milk-M, Inner Mongolia), Ely/250 mL (milk-E, Inner Mongolia) and Trenwith/250 mL (milk-T, Inner Mongolia), and orange juices, such as Master Kong/250 mL (juice-M, Tianjin), President/500 mL (juice-P, Shanghai) and Coca/500 mL (juice-C, Shanghai) were purchased from Wal-Mart supermarket, China. Bovine serum obtained from Shanghai Hyclone. All of the above chemicals were of analytical grade and used without further purification. De-ionized (DI) water was used for preparing samples. Double distilled water was used throughout the electrochemical measurement.

Syntheses of PC: Typically, 1.5 g potassium citrate was calcined in a tube furnace under argon at 800 °C for 1 h⁻¹. The resulting solid was rinsed by an aqueous HCl solution (1.0 M) for 24 h. Subsequently, the black power was isolated through centrifugation, washed with water, and dried at 70 °C for 10 h.

Characterization

X-ray diffraction (XRD) was recorded using a Regaku D/Max-2500 (Rigaku Co., Japan) diffractometer with a Cu Kα radiation to determine the crystal structure. The

morphologies of the obtained samples were characterized using a scanning electron microscope (SEM) (FE-SEM, JSM-7500, Japan) and a transmission electron microscopy (TEM) (JEM-2100F, JEOL, Japan). X-ray photoelectron spectroscopy (XPS) spectra and ultraviolet photoelectron spectrum (UPS) were recorded on a Thermo ESCALAB 250 Axis Ultra spectrometer (VG Scientific, UK) using an Al K α radiation. Fourier transform infrared spectroscopy (FTIR) spectrum was performed on NEXUS 670 infrared spectrophotometer (Thermo Nicolet, USA). The spectrum was recorded in the range from 400 to 4000 cm⁻¹ by using pressed KBr tables. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis was carried out on SPECTRO ARCOS spectrometer. The Brunauer–Emmett–Teller (BET) surface area and pore volume of the samples was analyzed by an ASAP 2020 Micromeritics instrument.

The calculation of ΔE

The driving force for the SIED is the positive ΔE between the reduction potential of $Ag^+ ({}^{\phi}Ag^+ {}^{/\phi}Ag^+)$ and the oxidation potential of PC (${}^{\phi}R - PC/O - PC$). According to Eq. (1), the value of ΔE can be calculated. The oxidation potential of ${}^{\phi}R - PC/O - PC$ was calculated to be -0.25 V on the basis of the work function from the UPS result. Additionally, the reduction potential of ${}^{\phi}Ag^+ {}^{/\phi}Ag^-$ was calculated to be 0.779 V according to the Nernst equation Eq. (2). Therefore, the value of ΔE was calculated to be 1.029 V, indicating that the spontaneous redox reaction for the synthesis of Ag/PC was thermodynamically feasible.

$$\Delta E = \varphi_{Ag^+} / \varphi_{Ag} - \varphi_{R - PC/O - PC}$$
(1)

$$\varphi_{Ag^+}/\varphi_{Ag} = 0.779 + \frac{0.059}{1} \log \frac{[Ag^+]}{[Ag]}$$
 (2)

Fig. S1 Low-magnification SEM image.

Fig. S2 N_2 sorption isotherm curve of PC.

Fig. S3 The pore size distribution of PC.

Fig. S4 (a) XPS full scan spectra and (b) O 1s high resolution XPS spectra for Ag/PC-6.

Fig. S5 C1s high resolution XPS spectra for Ag/PC-6.

Fig. S6 Ag 3d high resolution XPS spectra for 0.2 mM-Ag/PC-6 (a) and. 1.1 mM-Ag/PC-6 (b).

Fig. S7 TEM images of 0.2 mM-Ag/PC-6 (a, c) and 1.1 mM-Ag/PC-6 (b, d).

Fig. S8 XRD patterns of 1.1 mM-Ag/PC-6 and 0.2 mM-Ag/PC-6.

Fig. S9 The FTIR characterization of PC and Ag/PC-6.

Fig. S10 CVs of Ag/PC-6 and Ag/PC-SB in 0.1 M PBS with 5 mM H_2O_2 (Scan rate: 50 mV s⁻¹).

Fig. S11 CVs of Ag/PC-6 with different Ag ions concentration (0.2, 0.6 and 1.1 mM) in 0.1 M PBS in the presence of 5 mM H_2O_2 (Scan rate: 50 mV s⁻¹).

Fig. S12 CVs of Ag/PC-6 (a) and Ag/GO-6 (b) in 0.1 M PBS in the absence and presence of 5 mM H_2O_2 (Scan rate: 50 mV s⁻¹).

Fig. S13 Cathodic peak currents of the six successive tests with the same Ag/PC-6 in 9 mM H_2O_2 (n=3).

Fig. S14 TEM image (a) and the particle size distribution (b) of Ag/PC-6 after the electrochemical H_2O_2 detection about 5000s.

Fig. S15 Six tests with same Ag/PC-6 electrode to H_2O_2 monitoring in 25 days (n=3).

Materials	Ag NPs content by ICP (wt%)	
Ag/PC-1	0.91	
Ag/PC-6	1.24	
Ag/PC-10	1.28	

 Table S1. ICP characterization results of Ag/PC-1, Ag/PC-6, and Ag/PC-10.

Materials	O element content ^a	-C-OH group content	-CHO group content
	(at%)	(at%)	(at%)
РС	13.42	7.1	3.2
Ag/PC-6	10.58	4.8	1.9

Table S2. XPS characterization results of PC and Ag/PC-6.

^a The content of Co element is collected by full scan spectrum of XPS.

Electrodes	Linear range	LOD (µM)	Sensitivity (µA mM-	Refs.
	(mM)		¹ cm ⁻²)	
Ag NPs/porous	0.0016-0.5	0.45	-	2
silicon				
Ag NS/ITO	0.2-4	1	-	3
Ag NPs/3DG	0.03-16.21	16.21	-	4
Ag NPs/DNA	0.004-16	1.7	-	5
AgNPs/GN/GCE	0.1-40	28	-	6
Ag/MnO/CNTs/GC	0.005-10.4	1.7	82.5	7
E				
LSG-Ag	0.100-10	7.9	-	8
Inkjet printed Ag	0.1 - 6.8	5.0	287	9
electrode				
Ag/NCNFs	0.020–20	0.15	142.2	10
Cu ₂ O/AuCu/Cu	0.010-9	0.14	127.98	11
Au@Ag@C	0.005-4.75	0.14	-	12
AgCo/MWCNT/G	-	0.74	57.14	13
CE				
N-graphene-Ag	0.1 - 80	0.26	88.47	14
NDs/ITO				
Ag nanosheets	0.005-6	0.17	320.3	15

Table S3. Comparison of electrochemical performance of previous reported sensors for H_2O_2 detection.

				work
Ag NP/PC-6	0.001-20	0.729	226.9	This
Ag nanowire	0.1-3.1	29.2	266	29
MWCNT/Ag	0.05-17	0.5	1.42	28
AgNPs-rGO	0.1-60	1.8	-	27
layer				
Nanorough Ag	0.01-22.5	6	-	26
CC/Co@C-CNTs	0.0004-7.2	0.27	388	25
Co@MOF-808	0.01-0.45	1.3	382.27	24
Mn@FeNi-S/GO	-	0.0088	8.929	23
AuPd@GR	0.005-11.5	1	186.86	22
nanohybrid				
PdCu/CB	0.0004-5.0	0.054	-	21
ZnO ₃ -CuO ₇ /CPE	0.003-0.53	2.4	1.11	20
Pt-PVA-CNT/GCE	0.002-3.8	0.7	122.63	19
Pt-N-graphene/ITO	0.001-1	0.34	61.23	18
Au-SiO ₂ -MTs	0.01-1	0.6	-	17
Ag-HNTs-MnO ₂	0.002-4.71	0.7	119	16

Food Samples	Added	Recovery rates (%)	RSD (%)
	(µM)		(n=3)
juice-M	10	91.2	1.6
juice-P	10	96.0	2.1
juice-C	10	90.6	5.4
milk-M	10	86.4	3.5
milk-E	10	97.0	2.9
milk-T	10	80.0	2.2
scrum	10	99.0	2.0

Table S4. Real-time detection of H_2O_2 in real samples.

References

- 1. M. Sevilla and A. B. Fuertes, ACS Nano, 2014, 8, 5069-5078.
- 2. A. A. Ensafi, F. Rezaloo and B. Rezaei, Sens. Actuators, B 2016, 231, 239-244.
- 3. M. Amiri, S. Nouhi and Y. Azizian-Kalandaragh, Mater. Chem. Phys., 2015, 155, 129-135.
- B. Zhan, C. Liu, H. Shi, C. Li, L. Wang, W. Huang and X. Dong, *Appl. Phys. Lett.*, 2014, 104, 243704.
- 5. K. Cui, Y. Song, Y. Yao, Z. Huang and L. Wang, Electrochem. Commun., 2008, 10, 663-667.
- 6. L. Jia, J. Liu and H. Wang, *Electrochim. Acta* 2013, **111**, 411-418.
- 7. Y. Han, J. Zheng and S. Dong, *Electrochim. Acta* 2013, **90**, 35-43.
- 8. E. Aparicio-Martínez, A. Ibarra, I. A. Estrada-Moreno, V. Osuna and R. B. Dominguez, *Sens. Actuators, B* 2019, **301**, 127101.
- L. Shi, M. Layani, X. Cai, H. Zhao, S. Magdassi and M. Lan, Sens. Actuators, B 2018, 256, 938-945.
- 10. H. Guan, Y. Liu, Z. Bai, J. Zhang, S. Yuan and B. Zhang, *Mater. Chem. Phys.*, 2018, 213, 335-342.
- 11. X. Liang, W. Li, H. Han and Z. Ma, J. Electroanal. Chem., 2019, 834, 43-48.
- 12. Y. Li, Y. Zhang, Y. Zhong and S. Li, Appl. Surf. Sci., 2015, 347, 428-434.
- 13. H. C. Kazici, F. Salman, A. Caglar, H. Kivrak and N. Aktas, *Fuller. Nanotube Car. N*, 2018, 26, 145-151.
- 14. M. T. Tajabadi, W. J. Basirun, F. Lorestani, R. Zakaria, S. Baradaran, Y. M. Amin, M. R. Mahmoudian, M. Rezayi and M. Sookhakian, *Electrochim. Acta* 2015, 151, 126-133.
- 15.B. Ma, C. Kong, X. Hu, K. Liu, Q. Huang, J. Lv, W. Lu, X. Zhang, Z. Yang and S. Yang, *Biosens. Bioelectron.*, 2018, **106**, 29-36.
- 16. S. Zhang, Q. Sheng and J. Zheng, RSC Adv., 2015, 5, 26878-26885.
- 17. S. Liu, B. Yu, F. Li, Y. Ji and T. Zhang, Electrochim. Acta, 2014, 141, 161-166.
- 18. M. T. Tajabadi, M. Sookhakian, E. Zalnezhad, G. H. Yoon, A. M. S. Hamouda, M. Azarang, W. J. Basirun and Y. Alias, *Appl. Surf. Sci.*, 2016, **386**, 418-426.
- Y. Fang, D. Zhang, X. Qin, Z. Miao, S. Takahashi, J.-i. Anzai and Q. Chen, *Electrochim. Acta* 2012, 70, 266-271.
- 20. S. Daemi, S. Ghasemi and A. Akbar Ashkarran, J. Colloid Interface Sci., 2019, 550, 180-189.
- 21. Y. Liu, H. Li, S. Gong, Y. Chen, R. Xie, Q. Wu, J. Tao, F. Meng and P. Zhao, Sens. Actuators, B 2019, 290, 249-257.
- 22. T. D. Thanh, J. Balamurugan, S. H. Lee, N. H. Kim and J. H. Lee, *Biosens. Bioelectron.*, 2016, **85**, 669-678.
- 23. S. Manavalan, J. Ganesamurthi, S.-M. Chen, P. Veerakumar and K. Murugan, *Nanoscale*, 2020, 12, 5961-5972.
- 24. Y.-S. Chang, J.-H. Li, Y.-C. Chen, W. H. Ho, Y.-D. Song and C.-W. Kung, *Electrochim. Acta*, 2020, **347**, 136276.
- 25. L. Long, H. Liu, X. Liu, L. Chen, S. Wang, C. Liu, S. Dong and J. Jia, *Sens. Actuators, B* 2020, **318**, 128242.
- 26. W. Lian, L. Wang, Y. Song, H. Yuan, S. Zhao, P. Li and L. Chen, *Electrochim. Acta*, 2009, **54**, 4334-4339.
- 27. X. Qin, Y. Luo, W. Lu, G. Chang, A. M. Asiri, A. O. Al-Youbi and X. Sun, *Electrochim. Acta*, 2012, **79**, 46-51.
- 28. W. Zhao, H. Wang, X. Qin, X. Wang, Z. Zhao, Z. Miao, L. Chen, M. Shan, Y. Fang and Q. Chen, *Talanta*, 2009, 80, 1029-1033.
- 29. E. Kurowska, A. Brzózka, M. Jarosz, G. D. Sulka and M. Jaskuła, *Electrochim. Acta*, 2013, 104, 439-447.