Carbon Nanotubes Coupled with Layered Graphite to Support SnTe Nanodots as High-Rate and Ultra-Stable Lithium Ion Battery Anodes

Huanhui Chen^{1,a,b}, Guanxia Ke^{1,a}, Xiaochao Wu^{1,a}, Wanqing Li^a, Hongwei Mi^a, Yongliang Li^a, Lingna Sun

^a, Qianling Zhang^a, Chuanxin He^a, Xiangzhong Ren^{a,*}

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China

^b Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology,

Shenzhen 518055, China

*Corresponding author.

Xiangzhong Ren, Email: renxz@szu.edu.cn, Tel/Fax: +86-755-26558134

¹ These authors contributed equally to this work.

Fig. S1 (a-b) The SEM images of pure SnTe at different magnification. (c-d) The SEM images of SnTe-G at different magnification.

Fig. S2 (a-b) The SEM images of SnTe-CNT-G-0.6 different magnification. (c-d) The SEM images of SnTe-CNT-G-1.0 at different

magnification.

Fig. S3 XPS survey-scan spectra of SnTe-CNT-G.

Fig. S4 XPS survey-scan spectra of SnTe (a), Core level spectra of Sn 3d (b) and Te 3d (c).

Fig. S5 XPS survey-scan spectra of SnTe-G (a), Core level spectra of Sn 3d (c), Te 3d (d) and C 1s (e).

Fig. S6 Cycling performance and Coulomb efficiency of SnTe-CNT-G with different graphite content at 200 mA g⁻¹.

Fig. S7 (a) CV curves of the SnTe-CNT-G anodes at 0.2 mV/s; (b) CV curves of the SnTe-CNT-G anodes at 0.2 mV/s.

Fig.S8 The galvanostatic charge-discharge profiles at varied current density of a) SnTe; b) SnTe-G; c) SnTe-CNT-G.

Fig. S9 Nyquist plots of SnTe-CNT-G with different graphite content.

Fig. S10 The pseudocapacitance contribution ratios of the SnTe-CNT-G electrodes at a scan rate of 1 mV s⁻¹.

Fig. S11 GITT curves of the SnTe electrode (a) and their Li⁺ diffusion coefficient for the initial discharge states (b).

Fig. S12 GITT curves of the SnTe-G electrode (a) and their Li⁺ diffusion coefficient for the initial discharge states (b).

Fig. S13 3D contour plots of in-situ XRD patterns for SnTe-CNT-G anodes during the initial cycle.

Fig. S14 (a-b) SEM images of SnTe-CNT-G electrode before cycling.

Fig. S15 (a-b) SEM images of SnTe electrode before cycling; (c-d) SEM images of SnTe electrode at 200 mA g⁻¹ after 100 cycles.

Fig. S16 (a-b) SEM images of SnTe-G electrode before cycling; (c-d) SEM images of SnTe-G electrode at 200 mA g⁻¹ after 100 cycles.

	Reversible capacity (mAhg ⁻¹)/Cycle number				
Materials	Current density	Current density	Current density	Current density	Ref.
	100mA g ⁻¹	200mA g ⁻¹	1000mA g ⁻¹	2000mA g ⁻¹	
Sb ₂ Te ₃ @Gra	570/200th			372/200th	1
SnSb ₂ Te ₄ /G		574/100th	478/1000th		2
MoTe ₂ /FLG	674/150th			335/10th	3
Ge ₂ Sb ₂ Te ₅	947/100th			546/10th	4
SnSe ₂ QDs/rGO		746/500th		460/3000th	5
C/SnO/Sn	816/100th		504/1000th		6
SnS/CNFs		648/500th	520/2400th	167/10th	7
Sn/NMCs		472/500th	437/1600th		8
SnO ₂ / Ti ₃ C ₂			530/500th	489/10th	9
SnO ₂ QDs/Ti ₃ C ₂ T _x	660/100th		522/10th	410/10th	10
SnTe-CNT-G		840/100th		669/1400th	This work

Table S1. Comparison of the electrochemical lithium storage performance of the SnTe-CNT-G electrodes with the literature data.

References

- Y. Wei, J. Chen, S. Wang, X. Zhong, R. Xiong, L. Gan, Y. Ma, T. Zhai and H. Li, ACS 1. Applied Materials Interfaces, 2020, 12, 16264-16275.
- Z. Wu, G. Liang, W. K. Pang, T. Zhou, Z. Cheng, W. Zhang, Y. Liu, B. Johannessen and Z. 2. Guo, Advanced Materials, 2020, 32, e1905632.
- N. Ma, X. Y. Jiang, L. Zhang, X. S. Wang, Y. L. Cao and X. Z. Zhang, Small, 2018, 14, 3. e1703680.
- 4. Y. Wei, L. Huang, J. Chen, Y. Guo, S. Wang, H. Li and T. Zhai, ACS Applied Materials Interfaces, 2019, 11, 41374-41382.

- 5. Z. Xiang Huang, B. Liu, D. Kong, Y. Wang and H. Ying Yang, *Energy Storage Materials*, 2018, **10**, 92-101.
- 6. Y. Cheng, Z. Yi, C. Wang, Y. Wu and L. Wang, *Chemical Engineering Journal*, 2017, **330**, 1035-1043.
- J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan, X. Wang and G. Cao, *Energy Storage Materials*, 2019, 17, 1-11.
- H. Ying, S. Zhang, Z. Meng, Z. Sun and W.-Q. Han, *Journal of Materials Chemistry A*, 2017, 5, 8334-8342.
- 9. Y. T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Z. Zhu, H. Liu, Y. Gogotsi and B. Xu, *Advanced Materials*, 2018, **30**, e1707334.
- H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu and R. Chen, *Nano-Micro Letters*, 2019, 11.