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Note1. Solution of transverse magnetic (TM) and transverse electric (TE) waveguide 

modes in uniaxial and isotropic vdW crystal flake

The propagation of electromagnetic wave should satisfy the Maxwell’s equations,
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The anisotropic permittivity tensors of the uniaxial crystal  and isotropic materials ( )z t 

 are expressed as,( )z t 
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A typical 2D waveguide mode with an in-plane propagation wave vector of  can be qv

expressed as  or , where  is    , , exp( )E x z t eE z iqx i t 
v v    , , exp( )H x z t eH z iqx i t 

v v ev

the unit vector of the electric field. For uniaxial and isotropic crystals, the Maxwell’s 

equations have two independent solutions which are expressed as,
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By organizing the above equation, we can obtain the expressions of the electromagnetic 

fields of TM and TE waves in each layer as,
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where εt is the in-plane dielectric constant. Parameter k0 = 2π/λ0 is the free-space wavevector. 

Because the waveguide modes are confined to the two interfaces, the electric and magnetic 

fields for the TM (Ex, Hy, Ez) modes should have the forms as,
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where  and . The solutions of the (Ex, Hy, Ez) can scsc kq ,
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be obtained by matching the boundary conditions at the interfaces (z = 0 and z = –d) as,
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where the superscripts “c”, “w”, and “s” represent the cover, waveguide, and substrate layers, 

respectively. Consequently, the polariton modes in the waveguide and the associated 

dispersion relations can be obtained by solving the Equations (S1) ~ (S8). Specifically, the 

dispersion relation can be stated as,
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with m = 0, 1, 2, … the orders of the TM modes.

The electric and magnetic fields of the TE (Hx, Ey, Hz) modes should have the forms as,
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can be obtained by matching the boundary conditions at the interfaces (z = 0 and z = –d) as,
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Consequently, the dispersion relation of the TE modes can be stated as,
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where n= 0, 1, 2, … is the orders of the TE modes.

Note 2. Calculation of isofrequency surfaces of electromagnetic waves propagating 

inside a homogeneous non-magnetic anisotropic crystal



The wave equation in an anisotropic crystal is,
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where ε0 and μ0 are vacuum permittivity and permeability, respectively. Equation (S15) 

actually contains three equations, with one for each axis. Explicitly, these equations can be 

expressed in the matrix form as
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The isofrequency surfaces can be obtained by solving Eq. (S17) as,
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Eq. (S18) is then employed to draw the isofrequency surfaces of the biaxial α-MoO3 

crystal. In the mid-infrared region, the optical responses of the α-MoO3 is governed by the 

phonon absorption, thus the permittivity of the α-MoO3 crystal can be described using the 

following Lorentzian equation,1
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longitudinal optical (LO) and transverse optical (TO) phonon frequencies, respectively. 



Parameter  is the broadening factor of the Lorentzian lineshape. The principal axes of the j

material are denoted by x, y, and z. In our study, the x, y, and z correspond to the crystalline 

directions [100], [001], and [010] of the α-MoO3, respectively.

For uniaxial crystal , Eq. (S18) is reduced to,)( zyx  
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For isotropic crystal , Eq. (S18) is further reduced to,)( Izyx  
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Note 3. Calculations of the PhP interference patterns

In order to reproduce the near-field optical images in α-MoO3 flake, we performed 

theoretical calculations on the PhP wave interference patterns around the circular hole. 

Specifically, the PhP waves were launched by the AFM tip, and the waves outside the hole 

were the sum of the tip-launched PhPs and those reflected from the hole edges.2,3 Therefore, 

the interference wave amplitude can be expressed as,
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where ψ0 is the tip launched PhP waves, and the waves reflected by the circular hole can be 

described as . Parameters Rj, γp, and  describe the 0 exp{ 2Re[ ( )] ( )}j j j pR q r i       v v
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reflection coefficient, PhP decay rate, and distance between the hole edge and AFM tip, 

respectively. The interference patterns recorded in experimental measurements are associated 

with |ψ|. To simplify the analysis, we just calculated the interference of TM0 mode. 

According to the dispersion relation (Eq. (16) in the main text), the decay rate of the PhP 

wave can be calculated as γp=Im(q)/Re(q) (Fig. S3). This value should be employed in Eq. 

(S22) to calculate the near-field distribution. However, in the nano-imaging measurements, 



because the PhPs were launched into the α-MoO3 flak from the metallic tip, due to the 

conversation of energy the intensity of the PhP waves will be annihilated as they are 

spreading away from the tip, even without any dielectric loss from the material. In addition, 

due to the impurities and defects introduced during fabrication of the circular hole structure 

(Fig. 4b in the main text), additional losses will be introduced to the PhP propagating. To take 

these two effects into consideration, we treated the γp as an adjustable parameter, whose value 

should be chosen to match with the experimental nano-imaging results. In a specific 

calculation, parameters Rj and γp are fixed as –1 and 0.2, respectively. A normalized 

amplitude ψ0 = 1 is set in all of the calculations. The wave vectors  can be obtained )(qv

from the in-plane dispersion relations calculated by the waveguide model. An interval of 0.5° 

is employed for the PhP waves propagating in all directions.

Fig. S1 In-plane isofrequency contours of the electromagnetic plane waves in the biaxial α-

MoO3 crystal. The excitation frequencies are (a) 750 cm–1 (Band 1), (b) 920 cm–1 (Band 2), 

and (c) 990 cm–1 (Band 3), respectively.



Fig. S2 In-plane contours of the imaginary part of wave vector of the PhP modes excited at 

750 cm–1 (Band 1) (a), 920 cm–1 (Band 2) (b), and 990 cm–1 (Band 3) (c), respectively.

Fig. S3 Decay rates of the PhP waves propagating along different in-plane directions, which 

are calculated from the analytical waveguide model. The calculations are done at 750 cm–1 

(Black line), 920 cm–1 (red line), and 990 cm–1 (blue line).



Fig. S4 Electric field Ex distributions in the 2D α-MoO3 flake as functions of in-plane 

propagation angle θ. The normalized electric field amplitudes are drawn for the first four 

modes (l = 0, 1, 2, 3), with excitation frequencies of (a–d) 750 cm–1 (Band 1), (e–h) 920 cm–1 

(Band 2), and (i–l) 990 cm–1 (Band 3). The thickness of the α-MoO3 flake is 210 nm.



Fig. S5 Magnetic field Hy distributions in the 2D α-MoO3 flake as functions of in-plane 

propagation angle θ. The normalized magnetic field amplitudes are drawn for the first four 

modes (l = 0, 1, 2, 3), with excitation frequencies of (a–d) 750 cm–1 (Band 1), (e–h) 920 cm–1 

(Band 2), and (i–l) 990 cm–1 (Band 3). The thickness of the α-MoO3 flake is 210 nm.

Fig. S6 Schematic showing the interference of PhP waves launched by the metallic tip with 

those reflected by the circular hole.



Fig. S7 FEM simulated in-plane isofrequency contours. (a) Schematic showing the FEM 

simulations where a vertically-polarized electric dipole source is employed to launch the PhP 

waves. (b–d) Fourier transformations of the 2D near-field intensities distributions calculated 

by the FEM simulations. The real-space of the near-field distributions are shown in Figure 

4j–4l. White lines shown in (b)–(d) are results calculated by the waveguide model.

Fig. S8 (a, b) Near-filed optical intensity distributions of the α-MoO3 flake. The excitation 

frequencies are (c) 920 cm–1 and (d) 990 cm–1, respectively. Scale bars: 1 μm. (c, d) 

Corresponding Fourier transform images of (a) and (b). Scale bars: 20 μm–1.



Fig. S9 Ratios between the transverse electric field amplitude (Ey′|) and longitudinal electric 

field amplitude (|Ex′|). The ratios are drawn for the first two PhP modes (l = 0 and 1). The 

excitation frequencies are 750 cm–1 (a), 920 cm–1 (b), and 990 cm–1 (c).
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