Supporting Information

Fine-regulating ultramicropore of porous carbon via a self-sacrificial template route for high-performance supercapacitors

Yunbo Zhao,^a Ye Yuan,^b Yanmei Xu,^a Guiyue Zheng,^a Qian Zhang,^a Yuqian Jiang,^a Zeyu Wang,^b Naishun Bu, *^c Lixin Xia, *^{a,d} and Zhuojun Yan *^a

- a. College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
 E-mail: lixinxia@lnu.edu.cn; zjyan@lnu.edu.cn
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, P. R. China.
- c. School of Environmental Science, Liaoning University, Shenyang 110036, P. R. China. E-mail: bunaishun@lnu.edu.cn
- d. Yingkou Institute of Technology, Yingkou 115014, P. R. China.

Fig. S1 FTIR spectra for LNU-16 and its monomers.

Fig. S2 Solid-state ¹³C CP/ MAS NMR spectrum for LNU-16.

Fig. S3 X-ray diffraction pattern for LNU-16.

Fig. S4 Schematic synthesis route for LNU-17.

Fig. S5 (a) FTIR spectra for LNU-17 and its monomers; (b) Solid-state ¹³C CP/ MAS NMR spectrum for LNU-17; (c) PXRD pattern for LNU-17; (d) TGA curve in air condition for LNU-17.

Fig. S6 N₂ adsorption (filled symbols)-desorption (empty symbols) isotherms (a) and the pore size distribution curve by the NL-DFT method (b) for LNU-17.

Fig. S7 SEM (a, b) and TEM (c, d) images for LNU-17.

Fig. S8 XPS spectra for LNU-16 and C-LNU-16s.

Fig. S9 PXRD patterns for LNU-16 and C-LNU-16s.

Fig. S10 Raman spectra for C-LNU-16s.

Fig. S11 SEM (a) and TEM (b) images for LNU-16-500; SEM (c) and TEM (d) images for LNU-16-700; SEM (e) and TEM (f) images for LNU-16-900.

Fig. S12 CV curves for LNU-16-700 (a) and LNU-16-900 (b) at different scan rates.

Fig. S13 GCD curves for LNU-16-700 (a) and LNU-16-900 (b) at different current densities.

Samples	N (%)	C (%)	H (%)
LNU-16	3.34	83.67	4.49
LNU-16-500	4.42	85.80	3.08
LNU-16-600	4.46	84.70	4.58
LNU-16-700	3.47	80.06	3.53
LNU-16-800	2.91	82.38	0.66
LNU-16-900	2.95	80.68	3.77

Table S1. Elemental analysis of LNU-16 and C-LNU-16s

Method	Sample	S _{BET}	V _{Total}	V _{Micro}	S _{Micro}	P _{Micropore}	Capacitance
		(m ² g ⁻¹)	(cm ⁻³ g ⁻¹)	(cm ⁻³ g ⁻¹)	(m ² g ⁻¹)	(nm)	(F/g)
Self-sacrificial	LNUL 16 200	515.86	0.34	0.204	456.25	0.56, 0.72	294 (at 0.5 A/g)
template	LNU-16-800						242 (at 1 A/g)
	N ₂ -PAF-1	880	0.44	0.30	-	0.60	146 (at 1 A/g)
Carbonization of PAF-	CO ₂ -PAF-1	1513	0.80	0.46	-	0.64	159 (at 1 A/g)
1	Na-PAF-1	1916	1.36	0.39	-	0.93, 2-4	190 (at 1 A/g)
	K-PAF-1	2926	1.45	1.14	-	0.79, 1.30	280 (at 1 A/g)
Template-assisted	UMCs	773	0.47	0.39	-	0.55-0.57	-
strategy	0.95% CoNi/UMCs	613	0.41	0.32	-	0.57	268 (at 0.25 A/g)
Carbonization of	UCNs	842	0.74	0.25	549	0.54, 0.60	206 (at 1 A/g)
nanoparticles or	UCMa	570	0.20	0.22	505	0.50, 1.50	45 (at 1 A (a)
microspheres	UCIVIS	379	0.29	0.23	303	0.50, 1.50	43 (at 1 A/g)
Self-temple strategy	HPCFs	1650	1.26	-	-	1.8	206 (at 1 A/g)
	HPCF-0	131	-	-	-	-	-
Carbonization of							
covalent benzoxazine	N-DMC	1469	-	-	988.89	1.43	185 (at 1 A/g)
framework							
Carbonization of N-							
doped microporous	N-MCS ₇₀₀	1478	0.76	-	1412	0.57, 0.86, 1.26	292 (at 1 A/g)
carbon spheres							

Table S2. Summary of methods for constructing of microporosity and ultramicro-porosity

Sample		Capacitance	Current density		
		(F/g)	(A/g)	Electrolyte	Ref.
Carbon spheres	PCS-8	227	1	6 M KOH	[1]
	PCS	240	1	6 M KOH	[2]
	MCSs-0.4	310	0.5	6 M KOH	[3]
Carbon nanotubes	PC-CNTs	250	0.1	6 M KOH	[4]
	Si/CNFs	175	1	6 M KOH	[5]
N-doped porous	AC-900	278	1	6 M KOH	[6]
carbons	NPHCMs-65-800	200	0.5	6 M KOH	[7]
Hierarchical porous	HPC	204	0.5	6 M K OH	[9]
carbon	нгс	204	0.5	0 M KOH	[0]
COF-based materials	ACOF1	234	1	6 M KOH	[9]
	DAB-TFP COF	98	0.5	$1 \text{ M H}_2 \text{SO}_4$	[10]
	TaPa-Py COF	209	0.5	$1 \text{ M} \text{H}_2 \text{SO}_4$	[10]
CMP-based materials	TAT-CMP-2	183	1	1 M Na ₂ SO ₄	[11]
	N3-CMP	260	0.1	3 M KOH	[12]
MOF-based materials	PC-Zn	138	0.5	6 M KOH	[13]
	Cu _{1.96} S/C-650	200	0.5	$1 \text{ M H}_2\text{SO}_4$	[14]

 Table S3. Comparison of specific capacitance data of previous reported carbon materials

References

- [1] M. X. Guo, J. X. Guo, F. L. Tong, D. Z. Jia, W. Jia, J. B. Wu, L. X. Wang and Z. P. Sun, RSC Adv., 2017, 7, 45363-45368.
- [2] L. L. Zhang, L. Liu, Y. F. Yu, H. J. Lv, S. L. Hou and A. B. Chen, J. Mater. Sci.-Mater. Electron., 2019, 30, 3316-3324.
- [3] Z. G. Liang, L. M. Zhang, H. Liu, J. P. Zeng, J. F. Zhou, H. J. Li and H. Xia, *Nanoscale Res. Lett.*, 2019, 14, 124-130.
- [4] D. H. Wang, Y. Chen, H. Q. Wang, P. H. Zhao, W. Liu, Y. Z. Wang and J. L. Yang, *Appl. Surf. Sci.*, 2018, 457, 1018-1024.
- [5] Y. L. Zhao, Z. Zhao, M. Z. Wei, X. C. Jiang, H. M. Li, J. Gao and L. X. Hou, Prog. Nat. Sci., 2018, 28, 337-344.
- [6] M. Kim, P. Puthiaraj, Y. J. Qian, Y. Kim, S. Jang, S. Hwang, E. Na, W. Ahn and S. E. Shim, *Electrochim. Acta*, 2018, 284, 98-107.
- [7] N. Zhang, F. Liu, S. D. Xu, F. Y. Wang, Q. Yu and L. Liu, J. Mater. Chem. A, 2017, 5, 22631-22640.
- [8] F. J. Miao, C. L. Shao, X. H. Li, K. X. Wang, N. Lu and Y. C. Liu, J. Mater. Chem. A, 2016, 4, 5623-5631.
- [9] G. Y. Kim, J. Yang, N. Nakashima and T. Shiraki, Chem. Eur. J., 2017, 23, 17504-17510.
- [10] A. M. Khattak, Z. A. Ghazi, B. Liang, N. A. Khan, A. Lqbal, L. S. Li and Z. Y. Tang, J. Mater. Chem. A, 2016, 4, 16312-16317.
- [11] X. C. Li, Y. Z. Zhang, C. Y. Wang, Y. Wan, W. Y. Lai, H. Pang and W. Huang, Chem. Sci., 2017, 8, 2959-2965.
- [12] J. M. Lee, T. H. Wu, B. M. Alston, M. E. Briggs, T. Hasell, C. C. Hu and A. I. Cooper, J. Mater. Chem. A, 2016, 4, 7665-7673.
- [13] M. L. Yue, C. Y. Yu, H. H. Duan, B. L. Yang, X. X. Meng and Z. X. Li, Chem. Eur. J., 2018, 24, 16160-16169.
- [14] R. B. Wu, D. P. Wang, V. Kumar, K. Zhou, A. Law, P. S. Lee, J. Lou and Z. Chen, *Chem. Commun.*, 2015, **51**, 3109-3112.