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Table SI: The total energies (in eV) for FM, NM, AFM-N, AFM-ST, AFM-ZZ, and 

AFM-N-ST states for the Cr2N6C3 ML without and with the Hubbard U (in eV) corrections. 

 FM NM AFM-N  AFM-ST AFM-ZZ AFM-N-ST 

Ueff=0 -376.455 -366.372 -374.942 -375.141 -375.633 -375.344 

Ueff=3.5 -356.944 ̶ -356.348 -356.218 -356.700 -356.353 
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Fig. S1: (a) Orbital-resolved DOSs of the FM Cr2N6C3 ML. The positive and negative DOS 

values correspond to the spin-up and spin-down states, respectively. (b) Spatial distribution of 

the spin-polarized electron density for the Cr2N6C3 ML. The yellow and light blue colors denote 

the net spin-up and spin-down charge densities, respectively. (c) Electronic configuration of the 

Cr ions in the Cr2N6C3 ML. (d) Bonding diagram of the double bonds formed between the N and 

C atoms. 
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Fig. S2: Band structure of the Cr2N6C3 ML with the HSE06 method. The SOC interaction is not 

considered. 
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Fig. S3: The 2D honeycomb-Kagome lattice with five lattice sites per unit cell. The sites A and B 

both have two orbitals 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦, while the sites C1, C2, and C3 all have single orbitals 

𝑝𝑧 . The blue arrows denote the lattice vectors, while the red arrows represent the 

nearest-neighbor hoppings 𝑡h and 𝑡K for honeycomb and Kagome sublattices, respectively. The 

position vectors di (i=1, 2, 3) between the nearest-neighbor sites in the honeycomb sublattice are 

marked. 
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Fig. S4: (a)-(f) Band structures and Berry curvatures of the Cr2N6C3 MLs with the magnetization 

direction α=-3π/4, -π/4, -π/36, π/36, π/4, and 3π/4, respectively. For the cases of α=-π/36 and π/36, 

the SOC strength is tripled to obtain clear results. (g) The Chern number as a function of the 

magnetization direction α. 
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Fig. S5: Band structures of the Cr2N6C3 ML under the biaxial tensile (a)-(c) and compressive 

(d)-(f) strain with different magnitudes, respectively. The SOC interaction is not considered. 
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Tight-binding Hamiltonian: 

For the 𝑑𝑥2−𝑦2/𝑥𝑦-honeycomb and 𝑝𝑧-Kagome combined lattices (Fig. S3), the real and 

reciprocal lattice vectors are respectively given by  

a1= 𝑎0(1,0,0), a2= 𝑎0(−
1

2
,
√3

2
, 0), a3= 𝑎0(0,0,20/𝑎0); 

b1=
2𝜋

Ω
(a2×a3), b2=

2𝜋

Ω
(a3×a1); 

Ω = |a1⋅ (a2×a3)|, 

where 𝑎0 is the optimized lattice constant. 

The basis functions can be taken as |𝑑𝑥2−𝑦2
A

⟩, |𝑑𝑥𝑦
A
⟩, |𝑑𝑥2−𝑦2

B
⟩, |𝑑𝑥𝑦

B
⟩, |𝑝𝑧

C1⟩, |𝑝𝑧
C2⟩, 

|𝑝𝑧
C3⟩. Due to the opposite mirror eigenvalues of the two group orbitals accommodated on the 

different sublattices, the hopping between the Cr-𝑑𝑥2−𝑦2/𝑥𝑦 and N-𝑝𝑧orbitals is forbidden and 

thus the model Hamiltonian can be written as 

𝐻 = 𝐻h(𝐤)⨁𝐻K(𝐤) 

                   = (
𝐻h
hop(𝐤) + 𝐻h

SOC(𝐤) 0

0 𝐻K
hop(𝐤) + 𝐻K

SOC(𝐤)
).              (1) 

In Eq. (1), the 

      𝐻h
hop(𝐤) = (

𝐻AA(𝐤) 𝐻AB(𝐤)

𝐻BA(𝐤) 𝐻BB(𝐤)
) =

(

 
 
𝜖𝑑 0
0 𝜖𝑑

ℎ𝑥2−𝑦2,𝑥2−𝑦2
AB

ℎ𝑥2−𝑦2,𝑥𝑦
AB

ℎ𝑥𝑦,𝑥2−𝑦2
AB

ℎ𝑥𝑦,𝑥𝑦
AB

† †
† †

𝜖𝑑         0
0         𝜖𝑑 )

 
 

,       (2) 

where ℎ𝑥2−𝑦2,𝑥2−𝑦2
AB = ∑ [

3

4
(𝑙i
2 −𝑚i

2)2𝑉𝑑𝑑𝜎 + [𝑙i
2 +𝑚i

2 − (𝑙i
2 −𝑚i

2)2]𝑉𝑑𝑑𝜋 + [𝑛i
2 + (𝑙2 −i

𝑚i
2)2/4]𝑉𝑑𝑑𝛿]𝑒𝑖𝐤⋅𝒅𝐢,                                                           (3) 

     ℎ𝑥𝑦,𝑥𝑦
AB = ∑ [3𝑙i

2𝑚i
2𝑉𝑑𝑑𝜎 + (𝑙i

2 +𝑚i
2 − 4𝑙i

2𝑚i
2)𝑉𝑑𝑑𝜋 + (𝑛i

2 + 𝑙i
2𝑚i

2)𝑉𝑑𝑑𝛿]i 𝑒𝑖𝐤⋅𝒅𝐢,    (4) 

ℎ𝑥𝑦,𝑥2−𝑦2
AB = ∑ [

3

2
𝑙i𝑚i(𝑙i

2 −𝑚i
2)𝑉𝑑𝑑𝜎 + 2𝑙i𝑚i(𝑚i

2 − 𝑙i
2)𝑉𝑑𝑑𝜋 + [𝑙i𝑚i(𝑙i

2 −𝑚i
2)/2]𝑉𝑑𝑑𝛿]𝑒

𝑖𝐤⋅𝒅𝐢
i .    
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(5) 

In Eqs. (2-5), the 𝜖𝑑 is the on-site energy of 𝑑𝑥2−𝑦2/𝑥𝑦 orbital, the l, m, and n are the direction 

cosines, and the 𝑉𝑑𝑑𝜎 , 𝑉𝑑𝑑𝜋 , and 𝑉𝑑𝑑𝛿  are the Slater-Koster hopping parameters for the 

different bonding (𝜎, 𝜋, and 𝛿) between the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals. In Eq. (1), the 

𝐻K
hop(𝐤) =

  −(

𝜖𝑝 2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟏 − 𝒅𝟑)/2] 2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟑)/2]

2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟏 − 𝒅𝟑)/2] 𝜖𝑝 2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟏)/2]

2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟑)/2] 2𝑡𝐾cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟏)/2] 𝜖𝑝

),  (6) 

where the 𝜖𝑝 and 𝑡𝐾 are the on-site energy and nearest-neighbor hopping of the 𝑝𝑧 orbital, 

respectively. 

The SOC terms in Eq. (1) are given by 

           𝐻h
SOC(𝐤) = 2𝜆1 (

0 −𝑖
𝑖 0

0 0
0 0

0 0
0 0

0 −𝑖
𝑖 0

)                     (7) 

and 

𝐻K
SOC(𝐤) = 2𝑖𝜆2 (−

0 cos[𝐤 ⋅ (𝒅𝟏 − 𝒅𝟑)/2] −cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟑)/2]
cos[𝐤 ⋅ (𝒅𝟏 − 𝒅𝟑)/2] 0 cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟏)/2]
cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟑)/2] −cos[𝐤 ⋅ (𝒅𝟐 − 𝒅𝟏)/2] 0

). 

(8) 


