Supplementary Information

Various half-metallic nodal loops in organic Cr₂N₆C₃ monolayers

Hairui Bao¹, Bao Zhao^{1,2}, Yang Xue^{3,1}, Hao Huan¹, Guanyi Gao¹, Xiaojuan Liu¹, and Zhongqin

Yang^{1,4}*

¹State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) & Department of Physics, Fudan University, Shanghai 200433, China

²School of Physics Science and Information Technology, Shandong Key Laboratory of Optical

Communication Science and Technology, Liaocheng University, Liaocheng 252059, China

³School of Science, East China University of Science and Technology, Shanghai 200237, China

⁴Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Corresponding Author

*E-mail: zyang@fudan.edu.cn

	FM	NM	AFM-N	AFM-ST	AFM-ZZ	AFM-N-ST
$U_{e\!f\!f}\!\!=\!\!0$	-376.455	-366.372	-374.942	-375.141	-375.633	-375.344
$U_{eff}=3.5$	-356.944	-	-356.348	-356.218	-356.700	-356.353

Table SI: The total energies (in eV) for FM, NM, AFM-N, AFM-ST, AFM-ZZ, and AFM-N-ST states for the $Cr_2N_6C_3$ ML without and with the Hubbard U (in eV) corrections.

Fig. S1: (a) Orbital-resolved DOSs of the FM $Cr_2N_6C_3$ ML. The positive and negative DOS values correspond to the spin-up and spin-down states, respectively. (b) Spatial distribution of the spin-polarized electron density for the $Cr_2N_6C_3$ ML. The yellow and light blue colors denote the net spin-up and spin-down charge densities, respectively. (c) Electronic configuration of the Cr ions in the $Cr_2N_6C_3$ ML. (d) Bonding diagram of the double bonds formed between the N and C atoms.

Fig. S2: Band structure of the $Cr_2N_6C_3$ ML with the HSE06 method. The SOC interaction is not considered.

Fig. S3: The 2D honeycomb-Kagome lattice with five lattice sites per unit cell. The sites A and B both have two orbitals $d_{x^2-y^2}$ and d_{xy} , while the sites C1, C2, and C3 all have single orbitals p_z . The blue arrows denote the lattice vectors, while the red arrows represent the nearest-neighbor hoppings t_h and t_K for honeycomb and Kagome sublattices, respectively. The position vectors d_i (*i*=1, 2, 3) between the nearest-neighbor sites in the honeycomb sublattice are marked.

Fig. S4: (a)-(f) Band structures and Berry curvatures of the $Cr_2N_6C_3$ MLs with the magnetization direction $\alpha = -3\pi/4$, $-\pi/4$, $-\pi/36$, $\pi/36$, $\pi/4$, and $3\pi/4$, respectively. For the cases of $\alpha = -\pi/36$ and $\pi/36$, the SOC strength is tripled to obtain clear results. (g) The Chern number as a function of the magnetization direction α .

Fig. S5: Band structures of the Cr₂N₆C₃ ML under the biaxial tensile (a)-(c) and compressive

(d)-(f) strain with different magnitudes, respectively. The SOC interaction is not considered.

Tight-binding Hamiltonian:

For the $d_{x^2-y^2/xy}$ -honeycomb and p_z -Kagome combined lattices (Fig. S3), the real and reciprocal lattice vectors are respectively given by

$$\mathbf{a}_{1} = a_{0}(1,0,0), \, \mathbf{a}_{2} = a_{0}(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0), \, \mathbf{a}_{3} = a_{0}(0,0,20/a_{0});$$
$$\mathbf{b}_{1} = \frac{2\pi}{\Omega}(\mathbf{a}_{2} \times \mathbf{a}_{3}), \, \mathbf{b}_{2} = \frac{2\pi}{\Omega}(\mathbf{a}_{3} \times \mathbf{a}_{1});$$
$$\Omega = |\mathbf{a}_{1} \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})|,$$

where a_0 is the optimized lattice constant.

The basis functions can be taken as $|d_{x^2-y^2}^A\rangle$, $|d_{xy}^A\rangle$, $|d_{x^2-y^2}^B\rangle$, $|d_{xy}^B\rangle$, $|p_z^{C1}\rangle$, $|p_z^{C2}\rangle$, $|p_z^{C3}\rangle$. Due to the opposite mirror eigenvalues of the two group orbitals accommodated on the different sublattices, the hopping between the $\operatorname{Cr} d_{x^2-y^2/xy}$ and $\operatorname{N} p_z$ orbitals is forbidden and thus the model Hamiltonian can be written as

$$H = H_{\rm h}(\mathbf{k}) \oplus H_{\rm K}(\mathbf{k})$$
$$= \begin{pmatrix} H_{\rm h}^{\rm hop}(\mathbf{k}) + H_{\rm h}^{\rm SOC}(\mathbf{k}) & 0\\ 0 & H_{\rm K}^{\rm hop}(\mathbf{k}) + H_{\rm K}^{\rm SOC}(\mathbf{k}) \end{pmatrix}.$$
(1)

In Eq. (1), the

$$H_{\rm h}^{\rm hop}(\mathbf{k}) = \begin{pmatrix} H^{\rm AA}(\mathbf{k}) & H^{\rm AB}(\mathbf{k}) \\ H^{\rm BA}(\mathbf{k}) & H^{\rm BB}(\mathbf{k}) \end{pmatrix} = \begin{pmatrix} \epsilon_d & 0 & h_{x^2 - y^2, x^2 - y^2}^{\rm AB} & h_{x^2 - y^2, xy}^{\rm AB} \\ 0 & \epsilon_d & h_{xy, x^2 - y^2}^{\rm AB} & h_{xy, xy}^{\rm AB} \\ \dagger & \dagger & \epsilon_d & 0 \\ \dagger & \dagger & 0 & \epsilon_d \end{pmatrix},$$
(2)

where $h_{x^2-y^2,x^2-y^2}^{AB} = \sum_{i} [\frac{3}{4} (l_i^2 - m_i^2)^2 V_{dd\sigma} + [l_i^2 + m_i^2 - (l_i^2 - m_i^2)^2] V_{dd\pi} + [n_i^2 + (l^2 - m_i^2)^2] V_{dd\delta}] e^{i\mathbf{k}\cdot\mathbf{d}_i},$ (3)

$$h_{xy,xy}^{\rm AB} = \sum_{i} [3l_{i}^{2}m_{i}^{2}V_{dd\sigma} + (l_{i}^{2} + m_{i}^{2} - 4l_{i}^{2}m_{i}^{2})V_{dd\pi} + (n_{i}^{2} + l_{i}^{2}m_{i}^{2})V_{dd\delta}] e^{i\mathbf{k}\cdot\mathbf{d}_{i}}, \qquad (4)$$

$$h_{xy,x^2-y^2}^{AB} = \sum_{i} \left[\frac{3}{2} l_i m_i (l_i^2 - m_i^2) V_{dd\sigma} + 2 l_i m_i (m_i^2 - l_i^2) V_{dd\pi} + \left[l_i m_i (l_i^2 - m_i^2)/2\right] V_{dd\delta}\right] e^{i\mathbf{k}\cdot\mathbf{d}_i}$$

In Eqs. (2-5), the ϵ_d is the on-site energy of $d_{x^2-y^2/xy}$ orbital, the *l*, *m*, and *n* are the direction cosines, and the $V_{dd\sigma}$, $V_{dd\pi}$, and $V_{dd\delta}$ are the Slater-Koster hopping parameters for the different bonding (σ , π , and δ) between the $d_{x^2-y^2}$ and d_{xy} orbitals. In Eq. (1), the

$$H_{\rm K}^{\rm hop}(\mathbf{k}) = -\begin{pmatrix} \epsilon_p & 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_1} - \mathbf{d_3})/2] & 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_3})/2] \\ 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_1} - \mathbf{d_3})/2] & \epsilon_p & 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_1})/2] \\ 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_3})/2] & 2t_K \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_1})/2] & \epsilon_p \end{pmatrix}, \quad (6)$$

where the ϵ_p and t_K are the on-site energy and nearest-neighbor hopping of the p_z orbital, respectively.

The SOC terms in Eq. (1) are given by

$$H_{\rm h}^{\rm SOC}(\mathbf{k}) = 2\lambda_1 \begin{pmatrix} 0 & -i & 0 & 0\\ i & 0 & 0 & 0\\ 0 & 0 & 0 & -i\\ 0 & 0 & i & 0 \end{pmatrix}$$
(7)

and

$$H_{\rm K}^{\rm SOC}(\mathbf{k}) = 2i\lambda_2 \begin{pmatrix} 0 & \cos[\mathbf{k} \cdot (\mathbf{d_1} - \mathbf{d_3})/2] & -\cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_3})/2] \\ -\cos[\mathbf{k} \cdot (\mathbf{d_1} - \mathbf{d_3})/2] & 0 & \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_1})/2] \\ \cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_3})/2] & -\cos[\mathbf{k} \cdot (\mathbf{d_2} - \mathbf{d_1})/2] & 0 \end{pmatrix}.$$
(8)