Supplementary Information

Various half-metallic nodal loops in organic $\mathrm{Cr}_{2} \mathbf{N}_{6} \mathrm{C}_{3}$ monolayers

Hairui Bao ${ }^{1}$, Bao Zhao ${ }^{1,2}$, Yang Xue ${ }^{3,1}$, Hao Huan ${ }^{1}$, Guanyi Gao ${ }^{1}$, Xiaojuan Liu ${ }^{1}$, and Zhongqin Yang ${ }^{1,4 *}$
${ }^{1}$ State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) \& Department of Physics, Fudan University, Shanghai 200433, China
\title{ ${ }^{2}$ School of Physics Science and Information Technology, Shandong Key Laboratory of Optical } Communication Science and Technology, Liaocheng University, Liaocheng 252059, China
${ }^{3}$ School of Science, East China University of Science and Technology, Shanghai 200237, China
${ }^{4}$ Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Corresponding Author

*E-mail: zyang@fudan.edu.cn

Table SI: The total energies (in eV) for FM, NM, AFM-N, AFM-ST, AFM-ZZ, and AFM-N-ST states for the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3}$ ML without and with the Hubbard U (in eV) corrections.

	FM	NM	AFM-N	AFM-ST	AFM-ZZ	AFM-N-ST
$U_{\text {eff }}=0$	$\mathbf{- 3 7 6 . 4 5 5}$	-366.372	-374.942	-375.141	-375.633	-375.344
$U_{\text {eff }}=3.5$	$\mathbf{- 3 5 6 . 9 4 4}$	-	-356.348	-356.218	-356.700	-356.353

Fig. S1: (a) Orbital-resolved DOSs of the FM $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3} \mathrm{ML}$. The positive and negative DOS values correspond to the spin-up and spin-down states, respectively. (b) Spatial distribution of the spin-polarized electron density for the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3} \mathrm{ML}$. The yellow and light blue colors denote the net spin-up and spin-down charge densities, respectively. (c) Electronic configuration of the Cr ions in the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3}$ ML. (d) Bonding diagram of the double bonds formed between the N and C atoms.

Fig. S2: Band structure of the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3} \mathrm{ML}$ with the HSE06 method. The SOC interaction is not considered.

Fig. S3: The 2D honeycomb-Kagome lattice with five lattice sites per unit cell. The sites A and B both have two orbitals $d_{x^{2}-y^{2}}$ and $d_{x y}$, while the sites $\mathrm{C} 1, \mathrm{C} 2$, and C 3 all have single orbitals p_{z}. The blue arrows denote the lattice vectors, while the red arrows represent the nearest-neighbor hoppings t_{h} and t_{K} for honeycomb and Kagome sublattices, respectively. The position vectors $\boldsymbol{d}_{\boldsymbol{i}}(i=1,2,3)$ between the nearest-neighbor sites in the honeycomb sublattice are marked.

Fig. S4: (a)-(f) Band structures and Berry curvatures of the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3}$ MLs with the magnetization direction $\alpha=-3 \pi / 4,-\pi / 4,-\pi / 36, \pi / 36, \pi / 4$, and $3 \pi / 4$, respectively. For the cases of $\alpha=-\pi / 36$ and $\pi / 36$, the SOC strength is tripled to obtain clear results. (g) The Chern number as a function of the magnetization direction α.

Fig. S5: Band structures of the $\mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{C}_{3} \mathrm{ML}$ under the biaxial tensile (a)-(c) and compressive
(d)-(f) strain with different magnitudes, respectively. The SOC interaction is not considered.

Tight-binding Hamiltonian:

 reciprocal lattice vectors are respectively given by

$$
\begin{gathered}
\mathbf{a}_{1}=a_{0}(1,0,0), \mathbf{a}_{2}=a_{0}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \mathbf{a}_{3}=a_{0}\left(0,0,20 / a_{0}\right) \\
\mathbf{b}_{1}=\frac{2 \pi}{\Omega}\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right), \mathbf{b}_{2}=\frac{2 \pi}{\Omega}\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right) ; \\
\Omega=\left|\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)\right|,
\end{gathered}
$$

where a_{0} is the optimized lattice constant.
The basis functions can be taken as $\left|d_{x^{2}-y^{2}}^{\mathrm{A}}\right\rangle,\left|d_{x y}^{\mathrm{A}}\right\rangle,\left|d_{x^{2}-y^{2}}^{\mathrm{B}}\right\rangle,\left|d_{x y}^{\mathrm{B}}\right\rangle,\left|p_{z}^{\mathrm{C} 1}\right\rangle,\left|p_{z}^{\mathrm{C} 2}\right\rangle$, $\left|p_{z}^{\mathrm{C} 3}\right\rangle$. Due to the opposite mirror eigenvalues of the two group orbitals accommodated on the different sublattices, the hopping between the $\mathrm{Cr}-d_{x^{2}-y^{2} / x y}$ and $\mathrm{N}-p_{z}$ orbitals is forbidden and thus the model Hamiltonian can be written as

$$
\begin{gather*}
H=H_{\mathrm{h}}(\mathbf{k}) \oplus H_{\mathrm{K}}(\mathbf{k}) \\
=\left(\begin{array}{cc}
H_{\mathrm{h}}^{\mathrm{hop}}(\mathbf{k})+H_{\mathrm{h}}^{\mathrm{SOC}}(\mathbf{k}) & 0 \\
0 & H_{\mathrm{K}}^{\mathrm{hop}}(\mathbf{k})+H_{\mathrm{K}}^{\mathrm{soC}}(\mathbf{k})
\end{array}\right) . \tag{1}
\end{gather*}
$$

In Eq. (1), the

$$
H_{\mathrm{h}}^{\mathrm{hop}}(\mathbf{k})=\left(\begin{array}{cc}
H^{\mathrm{AA}}(\mathbf{k}) & H^{\mathrm{AB}}(\mathbf{k}) \tag{2}\\
H^{\mathrm{BA}}(\mathbf{k}) & H^{\mathrm{BB}}(\mathbf{k})
\end{array}\right)=\left(\begin{array}{cccc}
\epsilon_{d} & 0 & h_{x^{2}-y^{2}, x^{2}-y^{2}}^{\mathrm{AB}} & h_{x^{2}-y^{2}, x y}^{\mathrm{AB}} \\
0 & \epsilon_{d} & h_{x y, x^{2}-y^{2}}^{\mathrm{AB}} & h_{x y, x y}^{\mathrm{AB}} \\
\dagger & \dagger & \epsilon_{d} & 0 \\
\dagger & \dagger & 0 & \epsilon_{d}
\end{array}\right)
$$

where $h_{x^{2}-y^{2}, x^{2}-y^{2}}^{\mathrm{AB}}=\sum_{\mathrm{i}}\left[\frac{3}{4}\left(l_{\mathrm{i}}^{2}-m_{\mathrm{i}}^{2}\right)^{2} V_{d d \sigma}+\left[l_{\mathrm{i}}^{2}+m_{\mathrm{i}}^{2}-\left(l_{\mathrm{i}}^{2}-m_{\mathrm{i}}^{2}\right)^{2}\right] V_{d d \pi}+\left[n_{\mathrm{i}}^{2}+\left(l^{2}-\right.\right.\right.$

$$
\begin{align*}
& \left.\left.\left.m_{\mathrm{i}}^{2}\right)^{2} / 4\right] V_{d d \delta}\right] e^{i \mathbf{k} \cdot \boldsymbol{d}_{\mathbf{i}}} \tag{3}\\
& \quad h_{x y, x y}^{\mathrm{AB}}=\sum_{\mathrm{i}}\left[3 l_{\mathrm{i}}^{2} m_{\mathrm{i}}^{2} V_{d d \sigma}+\left(l_{\mathrm{i}}^{2}+m_{\mathrm{i}}^{2}-4 l_{\mathrm{i}}^{2} m_{\mathrm{i}}^{2}\right) V_{d d \pi}+\left(n_{\mathrm{i}}^{2}+l_{\mathrm{i}}^{2} m_{\mathrm{i}}^{2}\right) V_{d d \delta}\right] e^{i \mathbf{k} \cdot \boldsymbol{d}_{\mathrm{i}}} \tag{4}\\
& h_{x y, x^{2}-y^{2}}^{\mathrm{AB}}=\sum_{\mathrm{i}}\left[\frac{3}{2} l_{\mathrm{i}} m_{\mathrm{i}}\left(l_{\mathrm{i}}^{2}-m_{\mathrm{i}}^{2}\right) V_{d d \sigma}+2 l_{\mathrm{i}} m_{\mathrm{i}}\left(m_{\mathrm{i}}^{2}-l_{\mathrm{i}}^{2}\right) V_{d d \pi}+\left[l_{\mathrm{i}} m_{\mathrm{i}}\left(l_{\mathrm{i}}^{2}-m_{\mathrm{i}}^{2}\right) / 2\right] V_{d d \delta}\right] e^{i \mathbf{k} \cdot \boldsymbol{d}_{\mathrm{i}}}
\end{align*}
$$

In Eqs. (2-5), the ϵ_{d} is the on-site energy of $d_{x^{2}-y^{2} / x y}$ orbital, the l, m, and n are the direction cosines, and the $V_{d d \sigma}, V_{d d \pi}$, and $V_{d d \delta}$ are the Slater-Koster hopping parameters for the different bonding $(\sigma, \pi$, and $\delta)$ between the $d_{x^{2}-y^{2}}$ and $d_{x y}$ orbitals. In Eq. (1), the

$$
\begin{align*}
& H_{\mathrm{K}}^{\mathrm{hop}}(\mathbf{k})= \\
& \quad-\left(\begin{array}{ccc}
\epsilon_{p} & 2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{1}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & 2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] \\
2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{1}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & \epsilon_{p} & 2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{1}}\right) / 2\right] \\
2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & 2 t_{K} \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{1}}\right) / 2\right] & \epsilon_{p}
\end{array}\right), \tag{6}
\end{align*}
$$

where the ϵ_{p} and t_{K} are the on-site energy and nearest-neighbor hopping of the p_{z} orbital, respectively.

The SOC terms in Eq. (1) are given by

$$
H_{\mathrm{h}}^{\mathrm{SOC}}(\mathbf{k})=2 \lambda_{1}\left(\begin{array}{cccc}
0 & -i & 0 & 0 \tag{7}\\
i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right)
$$

and

$$
H_{\mathrm{K}}^{\mathrm{SOC}}(\mathbf{k})=2 i \lambda_{2}\left(\begin{array}{ccc}
0 & \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{1}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & -\cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] \tag{8}\\
-\cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{1}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & 0 & \cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{1}}\right) / 2\right] \\
\cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{3}}\right) / 2\right] & -\cos \left[\mathbf{k} \cdot\left(\boldsymbol{d}_{\mathbf{2}}-\boldsymbol{d}_{\mathbf{1}}\right) / 2\right] & 0
\end{array}\right) .
$$

