ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Mortise-tenon joint structured hydrophobic surface-functionalized barium

titanate/polyvinylidene fluoride nanocomposites for printed self-powered

wearable sensors

Hai Li¹, Hoseong Song¹, Mengjie Long², Ghuzanfar Saeed¹ and Sooman Lim^{1*}

¹Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.

²Wuhan Chamtop New Materials Co., Ltd. Heping Street 1540, Wuhan 430080, China.

Fig. S1. (a) The photograph of 3D printing machine and (b) The illustration of printing FD-BTO/PVDF film with complex geometry on the ITO-PET film.

Fig.S2. The relationship between film thickness and air pressure and ink mass

FD-BTO/PVDF BTO/PVDF

Fig.S3. Optical photo after two weeks FD-BTO/PVDF ink and BTO/PVDF ink of standing. there is no noticeable particle sedimentation over two weeks for the resin mixed with functionalized particles

Fig. S4. (a) FT-IR spectra of the printed PVDF films with different contents of FD-BTO nanoparticles with electric poling. (b) The F(β) values in the printed samples. (c) FT-IR spectra of the printed PVDF films with different contents of BTO nanoparticles with electric poling. (d) The F(β) values in the printed samples.

Fig. S5. FT-IR spectra of the printed PVDF films of various FD-BTO nanoparticle contents with wavenumber ranging from (a) 3100 to 2900 cm-1 and (b) 1220 to 1120 cm⁻¹.

Fig. S6. The sketch of electron resonance in DMF

Fig. S7. contact angle of different contents of modified BTO/PVDF ink dropped on ITO-PET film.

solvents					
	Watar CA	Diindomothana	Saufa en en en en	Dispersive	Polar
Sample	water CA			surface energy	surface energy
details	(degrees)	CA (degrees)	(mN m ⁻¹)	$(mN m^{-1})$	(mN m ⁻¹)
ITO-PET	88.14	43.60	38.02	36.42	1.59
10%m-BTO/PVDF	65.03	35.86	48.20	37.94	10.03
20%m-BTO/PVDF	66.01	36.52	47.55	38.16	9.61
50%m-BTO/PVDF	72.32	33.96	45.88	39.36	6.12

Table S1 Calculated surface energies of samples using the contact angles measured with two different

Fig. S8. Graph of force applied by force machine.

Force F=ma

m: Weight, a: Gravity constant=9.8m/s²

Pressure P=F/S

F: Force, S: Force area=1cm²

Fig. S9. The dependence of output voltage on applied pressure for different composite films

Fig. S10. Output voltages of printed sensor at different impacting frequencies under a constant pressure force of 50 N.