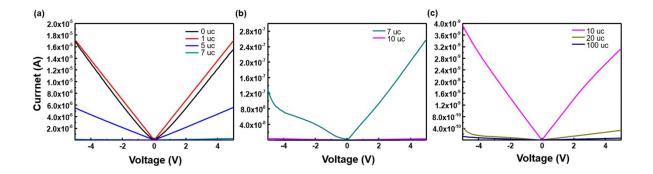
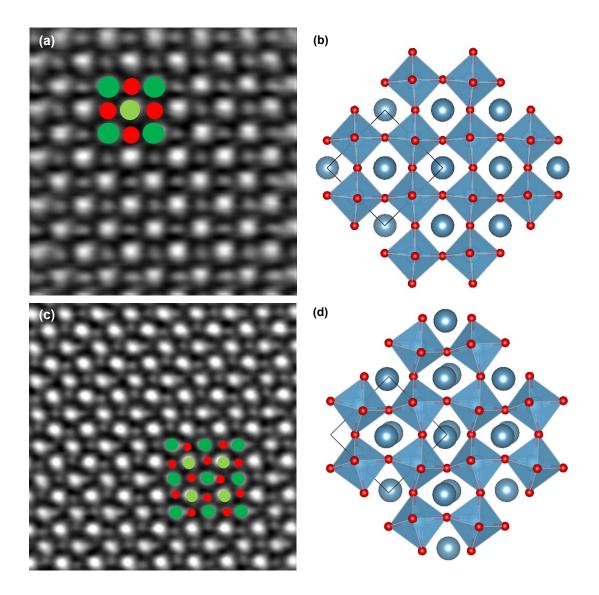
Supplementary Information

Suppression of metal to insulator transition using strong interfacial coupling at cubic and orthorhombic perovskite oxide heterointerface

Woonbae Sohn^{a,b}, Taemin Ludvic Kim^a, Tae Hyung Lee^a, Sangmoon Yoon^a, Chungsoo Kim^c,


Jung-Woo Yoo^d, Kwang Chul Roh^{b, *}, Miyoung Kim^{a, *} and Ho Won Jang^{a, *}

^aDepartment of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.


^b Energy Storage Materials Centre, Korea Institute of Ceramic Engineering and Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea.

^c Technology of Analysis Centre, Korea Institute of Ceramic Engineering and Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea.

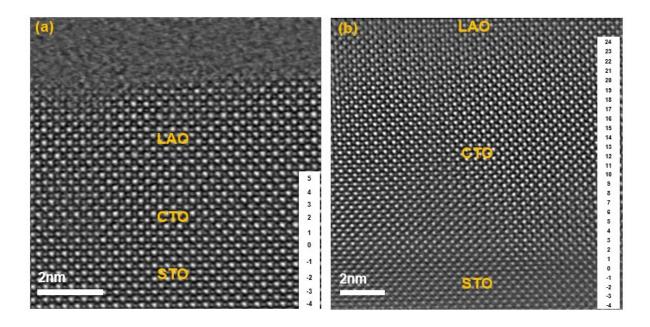

^d School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

Fig. S1. I-V curves of the LAO/CTO/STO heterostructures with different CTO interlayer thicknesses: (a) 0 - 7 uc, (b) 7 and 10 uc, (c) 10 - 100 uc.

Fig. S2. (a) Magnified iDPC STEM image of the 5 uc CTO film in the zone axis of $[100]_p$ with marked atom position. (b) Atomic model of 5 uc CTO film, showing near-cubic symmetry. (c) Magnified iDPC STEM image of the 24 uc CTO film in the zone axis of $[100]_p$ with marked atom position. (d) Atomic model of 24 uc CTO film, showing orthorhombic symmetry.

Fig. S3. iDPC STEM image of the (a)LAO/CTO (5 uc)/STO and (b) LAO/CTO (24 uc)/STO heterostructure with atomic row position at which Ti-O-Ti bonding angles are measured.