Supporting Information

Transition-metal single atoms embedded into defective BC₃ as efficient electrocatalysts for oxygen evolution and reduction reactions

Yanan Zhou,^{a,b} Guoping Gao,^b Wei Chu,^{*a} and Lin-Wang Wang ^{*b}

^a School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China

^b Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, United States

*Corresponding authors.

E-mail address: chuwei1965@scu.edu.cn (Wei Chu); lwwang@lbl.gov (Lin-Wang Wang).

Fig. S1. Optimized structures of models: (a) (3x3) p-BC₃ monolayer, (b) (3x3) V_B monolayer, (c) (3x3) V_C monolayer, (d) (3x3) V_{BC} monolayer and (e) (3x3) V_{CC} monolayer. The red line indicates the unit cell. The calculated density of states (DOS) of (f) (3x3) p-BC₃ monolayer, (g) (3x3) V_B monolayer, and (h) (3x3) V_C monolayer, respectively. The Fermi level is set at zero represented by the black dash line.

Fig. S2. Gibbs free energy of adsorbates corresponding to the d band center for (a) $TM@V_B$ and (b) $TM@V_C$.

Fig. S3. Schematic diagrams of Rh/H and Pd/H substitution reactions for catalysts: (a) $Rh@V_B$ and (b) Pd@V_C.

Fig. S4. The minimum energy pathway of adsorbed Rh atom diffused from the vacancy adsorption site to a neighboring hollow site on $Rh@V_B$ catalyst.

Table S1 The detailed parameters for the optimized TM@V_B structures. d_{TM-C} is the bond distance between TM atom and its nearest C neighbor. Q refers to charges transfer from TM

atoms to the V_B substrate obtained by Bader charge analysis.

Table S2 The detailed parameters for the optimized TM@V_C structures. $d_{\text{TM-C/B}}$ is the bond distance between TM atom and its nearest C/B neighbor. Q refers to charges transfer from TM atoms to the V_C substrate obtained by Bader charge analysis.

Table S3 Computed adsorption free energies of HO*, O* and HOO* (ΔG_{HO*} , ΔG_{O*} , and ΔG_{HOO*}), overpotentials for OER (η^{OER}) and ORR (η^{ORR}) on TM@V_B systems, as well as the d band center values that related to Fermi level of TM@V_B. The unit for ΔG is eV, while for η is V.

Table S4 Computed adsorption free energies of HO*, O* and HOO* (ΔG_{HO*} , ΔG_{O*} , and ΔG_{HOO*}), overpotentials for OER (η^{OER}) and ORR (η^{ORR}) on TM@V_C systems, as well as the d band center values that related to Fermi level of TM@V_C. The unit for ΔG is eV, while for η is V.

Table S5 $^{\Delta G}(TM^{n+})$ and $\Delta G_{diss}(0)$ values in this work. Positive value of $\Delta G_{diss}(0)$ indicates the TM@V_B catalyst is stable against dissolution at pH = 0 condition. pH_{min} is the minimum pH value corresponding to the $\Delta G_{diss}(0)$. In this work, the maximum and minimum pH values are set as 16.0 and -2.0, respectively, which are realistic in this region.

Table S6 $^{\Delta G}(TM^{n+})$ and $\Delta G_{diss}(0)$ values in this work. Positive value of $\Delta G_{diss}(0)$ indicates the TM@V_c catalyst is stable against dissolution at pH = 0 condition. pH_{min} is the minimum pH value corresponding to the $\Delta G_{diss}(0)$. In this work, the maximum and minimum pH values are set as 16.0 and -2.0, respectively, which are realistic in this region.

Fig. S1. Optimized structures of models: (a) (3x3) p-BC₃ monolayer, (b) (3x3) V_B monolayer, (c) (3x3) V_C monolayer, (d) (3x3) V_{BC} monolayer and (e) (3x3) V_{CC} monolayer. The red line indicates the unit cell. The calculated density of states (DOS) of (f) (3x3) p-BC₃ monolayer, (g) (3x3) V_B monolayer, and (h) (3x3) V_C monolayer, respectively. The Fermi level is set at zero represented by the black dash line.

Fig. S2. Gibbs free energy of adsorbates corresponding to the d band center for (a) $TM@V_B$ and (b) $TM@V_C$.

Fig. S3. Schematic diagrams of Rh/H and Pd/H substitution reactions for catalysts: (a) $Rh@V_B$ and (b) $Pd@V_C$.

Fig. S4. The minimum energy pathway of adsorbed Rh atom diffused from the vacancy adsorption site to a neighboring hollow site on $Rh@V_B$ catalyst.

Table S1 The detailed parameters for the optimized $TM@V_B$ structures. d_{TM-C} is the bond distance between TM atom and its nearest C neighbor. Q refers to charges transfer from TM atoms to the V_B substrate obtained by Bader charge analysis.

System	$d_{\mathrm{TM-C}}(\mathrm{\AA})$	Q (<i>e</i>)
Mn@V _B	1.88	1.00
Fe@V _B	1.82	0.79
Co@V _B	1.80	0.66
Ni@V _B	1.84	0.56
Cu@V _B	1.91	0.61
Ru@V _B	1.90	0.64

Rh@V _B	1.91	0.42
$Pd@V_B$	1.97	0.40
Ir@V _B	1.92	0.46
Pt@V _B	1.95	0.34

Table S2 The detailed parameters for the optimized TM@V_C structures. $d_{\text{TM-C/B}}$ is the bond distance between TM atom and its nearest C/B neighbor. Q refers to charges transfer from TM atoms to the V_C substrate obtained by Bader charge analysis.

System	$d_{\mathrm{TM-C}}(\mathrm{\AA})$	$d_{ ext{TM-B}}\left(ext{\AA} ight)$	Q (<i>e</i>)
Mn@V _C	1.85	2.03	0.76
Fe@V _C	1.82	1.89	0.52
Co@V _C	1.78	1.86	0.32
Ni@V _C	1.81	1.89	0.27
Cu@V _C	1.89	2.00	0.39
Ru@V _C	1.88	1.95	0.21
Rh@V _C	1.90	1.97	0.06
Pd@V _C	1.97	2.00	0.07
Ir@V _B	1.90	1.97	0.04
Pt@V _C	1.95	1.99	0.11

Table S3 Computed adsorption free energies of HO*, O* and HOO* (ΔG_{HO*} , ΔG_{O*} , and ΔG_{HOO*}), overpotentials for OER (η^{OER}) and ORR (η^{ORR}) on TM@V_B systems, as well as the d band center values that related to Fermi level of TM@V_B. The unit for ΔG is eV, while for

η is V.

System	$\Delta G_{HO}*$	ΔG_{O^*}	$\Delta G_{HOO}*$	η^{OER}	η^{ORR}
Mn@V _B	-0.33	0.57	2.96	1.16	1.56
Fe@V _B	-0.06	1.04	3.20	0.93	1.29
Co@V _B	0.16	1.75	3.41	0.43	1.07
Ni@V _B	0.38	2.34	3.54	0.73	0.85

$Cu@V_B$ 0.53 2.45 3.64 0.69 0.7	0
$Ru@V_B$ 0.17 1.26 3.36 0.87 1.0	6
$Rh@V_B$ 0.83 2.25 3.97 0.49 0.4	0
$Pd@V_B$ 1.09 3.20 4.14 0.88 0.4	5
$Ir@V_B$ 0.37 1.53 3.60 0.84 0.8	6
$Pt@V_B$ 0.62 2.36 3.80 0.51 0.6	1

Table S4 Computed adsorption free energies of HO*, O* and HOO* (ΔG_{HO*} , ΔG_{O*} , and ΔG_{HOO*}), overpotentials for OER (η^{OER}) and ORR (η^{ORR}) on TM@V_C systems, as well as the d band center values that related to Fermi level of TM@V_C. The unit for ΔG is eV, while for η is V.

System	ΔG_{HO*}	$\Delta G_{O^{\ast}}$	ΔG_{HOO*}	η^{OER}	η^{ORR}
Mn@V _C	-0.49	0.75	2.86	0.88	1.72
Fe@V _C	-0.22	0.87	3.09	0.99	1.45
Co@V _C	-0.01	1.45	3.15	0.54	1.24
Ni@V _C	0.33	2.03	3.52	0.47	0.90
Cu@V _C	0.46	1.69	3.70	0.78	0.77
Ru@V _C	0.40	1.65	3.62	0.74	0.83
Rh@V _C	0.36	2.14	3.50	0.55	0.87
$Pd@V_C$	0.95	2.82	4.14	0.64	0.45
Ir@V _C	-0.08	1.41	3.14	0.55	1.31
Pt@V _C	0.48	1.99	3.75	0.53	0.75

Table S5 $^{\Delta G}(TM^{n+})$ and $\Delta G_{diss}(0)$ values in this work. Positive value of $\Delta G_{diss}(0)$ indicates the TM@V_B catalyst is stable against dissolution at pH = 0 condition. pH_{min} is the minimum pH value corresponding to the $\Delta G_{diss}(0)$. In this work, the maximum and minimum pH values are set as 16.0 and -2.0, respectively, which are realistic in this region.

TM	$\Delta G_{(TM^{n+1})}$	n	$\Delta G_{diss}(0)$	$\mathrm{pH}_{\mathrm{min}}$
----	-------------------------	---	----------------------	------------------------------

Mn	-1.18	2	-3.68	>16.0
Fe	-0.45	2	-2.42	>16.0
Co	-0.28	2	-1.43	12.15
Ni	-0.26	2	-1.67	14.16
Cu	0.34	2	-2.19	>16.0
Ru	0.46	2	-1.23	10.42
Rh	0.60	2	0.43	<-2.0
Pd	0.95	2	0.61	-5.13
Ir	1.16	3	0.51	<-2.0
Pt	1.18	2	1.19	<-2.0

Table S6 $^{\Delta G}(TM^{n+})$ and $\Delta G_{diss}(0)$ values in this work. Positive value of $\Delta G_{diss}(0)$ indicates the TM@V_C catalyst is stable against dissolution at pH = 0 condition. pH_{min} is the minimum pH value corresponding to the $\Delta G_{diss}(0)$. In this work, the maximum and minimum pH values are set as 16.0 and -2.0, respectively, which are realistic in this region.

TM	$\Delta G_{(TM^{n+})}$	n	$\Delta G_{diss}(0)$	pH _{min}
Mn	-1.18	2	-3.90	>16.0
Fe	-0.45	2	-2.42	>16.0
Co	-0.28	2	-1.68	14.23
Ni	-0.26	2	-1.50	12.72
Cu	0.34	2	-1.36	11.54
Ru	0.46	2	-0.86	7.32
Rh	0.60	2	0.16	-1.38
Pd	0.95	2	0.88	<-2.0
Ir	1.16	3	1.35	<-2.0
Pt	1.18	2	1.57	<-2.0