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 IFPTML modeling introduction 

 González-Díaz et al. introduced the Perturbation-Theory (PT) Machine Learning (ML) and Information 
Fusion (IF) approach known as the IFPTML algorithm.1 The general idea is to predict the output values of 
the function f(vij)calc for the jth multiple properties of the query system (Si) under study with a single model. 
In so doing, IFPTML starts with the value of a function of reference experimentally measured f(vij)ref for 
already known systems. Next, in the PT pre-processing phase we collect/calculate of the structural 
variables of the query system Si and the systems of references. These structural variables are often named 
as molecular descriptors Dki and ordered as a vector Dki (as in classic ML techniques). The non structural 
variables may be numeric variables Vki (like Temperature, time, etc.) ordered in vectors Vki. In addition, 
they may be also sets of discrete variables cj also ordered also as vectors cj (labels, experimental conditions, 
type of system, assay organisms, cell lines, technique used, method of synthesis, etc.). We should take into 
consideration that the molecular system may be a complex system composed by various sub-systems Si = 
Sia + Sib + …. Siq. This implies the possibility of existence of various sub-sets of vectors Dqki, Vqki, and cqij 
for each qth sub-system Sqi. Consequently, in the IF phase the IFPTML algorithm may carry out a data 
enrichment process by fusing the original dataset with other datasets that contain complimentary 
information about the system Si as a hole and/or other parts of the system (Sia, Sib, …. Siq). Subsequently, 
IFPTML calculate the values of the PT Operators (PTOs) used to measure the deviations or perturbations 
in the variables of the query system Si with respect to all the structural and non-structural variables of the 
systems of reference. The more commonly used PTOs have the form of Moving Averages (MA) with 
general notation ΔV(Dki)cj. These are similar to the MAs used in Box-Jenkins ARIMA time-series models. 
More complex PTOs have been introduced recently for complex NP systems.2-4 Last, in the ML phase the 
IFPTML algorithm performs the training/validation of the model with current ML techniques.
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Bacterial MNs dataset (MN-set)

 The data was released by Barabasi’s group as gzipped ASCII files.5 Data-format is: From → To (directed 
link). The information studied was previously obtained by Jeong et al. from the ‘intermediate metabolism 
and bioenergetics’ portions of the WIT database and used in order to try to understand the large-scale 
organization of metabolic networks.5 According to the authors, the biochemical reactions described within 
the WIT database are composed of substrates and enzymes connected by directed links. For each reaction, 
educts and products were considered as nodes connected to the temporary educt-educt complexes and 
associated enzymes. Bidirectional reactions were considered separately. For a given organism with N 
substrates, E enzymes and R intermediate complexes the full stoichiometric interactions were compiled 
into an (N+E+R) X (N+E+R) matrix, generated separately for each of the different organisms. The names, 
abbreviations, and links for all the networks studied are: Actinobacillus actinomycetemcomitans = AB; 
Bacillus subtilis = BS; Clostridium acetobutylicum = CA; Campylobacter jejuni = CJ; Chlamydia 
pneumoniae = CQ; Chlamydia trachomatis = CT; Deinococcus radiodurans = DR; Escherichia coli = EC; 
Enterococcus faecalis = EF; Haemophilus influenza =HI; Helicobacter pylori = HP; Mycobacterium 
bovis = MB; Mycoplasma genitalium = MG; Mycobacterium leprae = ML; Mycoplasma pneumonia = MP; 
Mycobacterium tuberculosis = MT; Neisseria gonorrhoeae = NG; Neisseria meningitidis = NM; 
Pseudomonas aeruginosa =PA; Porphyromonas gingivalis = PG; Streptococcus pneumonia = PN; 
Rhodobacter capsulatus = RC; Saccharomyces cerevisiae = SC; Streptococcus pyogenes = ST; Salmonella 
typhi =TY; Yersinia pestis =YP.

Shannon’s entropy scaling of MN local structural information. 

As we mentioned before the same kind of operators Shk(Dk) can be used for different subsystems. 
Firstly, we calculated the parameters Nms number of metabolites (m), or Dks = <Lins> average in-degree, Dks 
= <Louts> average out-degree for all metabolites in the MN of the sth organism. The calculation of these 
parameters was carried out with the software MI-NODES6 developed by our group and verified with the 
software CentBin.7 Next, by using Equation 1 we also applied the same probability operator p(Dk) to the 
structural descriptors of the and MNs (Dks). After that we obtained the values of respective entropy Sh(Dks) 
descriptors Sh(Nms), Sh(Lins) and Sh(Louts) of MN of the sth organism by using Equation 2. It is important 
to note that Nms, Lins, and Louts are local node centralities of the MNs.5 Consequently, the entropies obtained 
Sh(Nms), Sh(Lins), and Sh(Louts) are also local descriptors.6 In Table S1, you can see also the names of the 
organisms, two-letter codes, and their respective values of Sh(Nms), Sh(Lins), and Sh(Louts) for all the MNs 
studied. These values have been calculated in this work by the first time for this set of MNs.

Table S1. Shannon entropy information measures of MNs studied in this work.

 MN Org. MNs Shannon Entropy Information Measures
Ns Code Sh3(Nm) Sh4(Lin) Sh5(Lout) Sh(π1) Sh2(π2)
1 AB 0.134 0.088 0.090 0.015 0.014
2 BS 0.112 0.024 0.026 0.016 0.014
3 CA 0.128 0.065 0.068 0.007 0.009
4 CJ 0.134 0.091 0.093 0.01 0.012
5 CQ 0.143 0.133 0.134 0.038 0.038
6 CT 0.142 0.129 0.130 0.017 0.018
7 DR 0.110 0.023 0.024 0.008 0.007
8 EC 0.112 0.022 0.023 0.008 0.008
9 EF 0.134 0.085 0.087 0.008 0.011
10 HI 0.127 0.058 0.059 0.016 0.013
11 HP 0.135 0.089 0.091 0.015 0.017
12 MB 0.132 0.085 0.087 0.008 0.009
13 MG 0.142 0.126 0.127 0.016 0.017
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14 ML 0.132 0.084 0.085 0.008 0.009
15 MP 0.144 0.130 0.130 0.019 0.02
16 MT 0.123 0.054 0.056 0.015 0.014
17 NG 0.133 0.082 0.084 0.008 0.011
18 NM 0.134 0.087 0.089 0.009 0.012
19 PA 0.115 0.033 0.035 0.019 0.016
20 PG 0.132 0.088 0.090 0.008 0.011
21 PN 0.133 0.081 0.082 0.008 0.011
22 RC 0.119 0.042 0.044 0.017 0.015
23 SC 0.125 0.051 0.053 0.01 0.011
24 ST 0.133 0.082 0.084 0.01 0.011
25 TY 0.110 0.020 0.021 0.007 0.007
26 YP 0.124 0.059 0.061 0.01 0.013

 Markov-Shannon entropy scaling of MN high-order structural information. 

In any case, Nms, <Lins>, and <Louts> are local topological descriptors that only account for information 
of the node (metabolite in question) and the nodes directly linked to it direct precursors (educts) for the 
case of <Lins> and direct products (adducts) for the case of <Lout>.5 Consequently, we also used Shannon 
operators of the type Sh(Dk) = -p(Dk)·logp(Dk) to quantify higher order structural information of the MNs. 
However, in this particular case, the operator is not applied to the local descriptor per se. In this case we 
apply the operator to the probabilities obtained from a Markov Chain calculation.  In so doing, we 
calculated the values of entropy Shk of kth order for the sth species. The Shk values measure the connectivity 
information in the MN of the sth species for all metabolites and their neighbors (substrates or products) 
placed at a distance (number of reactions) ≤ k.  In order to calculate these indices we applied the Shk(Dk) = 
-p(Dk)·logp(Dk) operator directly to the absolute probabilities Dk = pk(m,s). These values are the absolute 
probabilities pk(m,s) with which the mth metabolite transforms into another metabolite (catabolism) and/or 
is the product (anabolism) of the different metabolic reactions in the MNs of the sth organism. The Markov 
matrix 1Πs was used to calculate pk(m,s) values by means of a Matrix-vector multiplication operation Mk·v 
involving the kth natural powers Mk of the original matrix M. In the case of a Markov matrix this product is 
(1Πs)k·π0 a component of Chapman-Kolgomorov equation. We calculated only the two first powers (1Πs)1 
and (1Πs)2of the Markov matrix 1Πs of each one of the sth bacteria species. After that we made the products 
π1s = (1Πs)1·π0 and π2s = (1Πs)2·π0. The resulting vectors π1s and π2s containing as elements the absolute 
probabilities p1(m,s) and p2(m,s) for each metabolite of the network. The values p1(m,s) are the absolute 
probabilities with which the mth metabolite comes directly from and/or transforms directly into another 
metabolite (k = 1). The values p2(m,s) are the absolute probabilities with which the mth metabolite comes 
directly from and/or transforms directly into intermediate metabolites that in turn came from and/or 
transform into a second product (k = 2). Finally, Shk(π1) and Shk(π2) values are calculated with the 
operators Shk(Dk) = -p(Dk)·logp(Dk) = Shk(Dk) = -p(pk(m,s))·logp(pk(m,s)) as the sum of these values of 
entropy for each mth node (metabolite) in the MNs, see Equation 3. In Table 3, you can see also the names 
of the organisms, two-letter codes, and values of Shk(π1) and Shk(π2) for all the MNs studied. These values 
have been calculated in this work by the first time for this set of MNs. The specific formula used to 
calculate these values of Sh(π1) and Shk(π2)  of MNs is the following, please see details on the literature:48

𝑆ℎ(𝛑𝑘 ) = − � 𝑝𝑘 (𝑚, 𝑠) · log 𝑝𝑘 (𝑚, 𝑠)         (3)
𝑚 =𝑚𝑚𝑎𝑥

𝑚=1
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IF process for NP vs. MNs datasets (W-set).

In the IF process we start with the NP-set and added the values of the MN-set to create the new working 
dataset (W-set). Consequently, each raw of the new W-set is composed by one row (NP assay case) of the 
NP-set and one row (MN case) of the MN-set. The new W-set contains a total of 5327 cases (NP vs. MN 
cases) including all the cases labels and experimental conditions cnj and csj of the original sets, see Figure 
S1 section (A). The new W-set includes all the values of ΔSh(Dkn)cnj and ΔSh(Dks)csj used to quantify the 
information of the input variables, see Figure S1 section (B). 

Figure S1. IF of labels and conditions (A) and inputs of NP vs. MN data sets (B)

The W-set also includes the functions f(n,j,s), f(s,j), and f(n,s), f(n,c,s,j). The first function gets the values 
f(n,j,s) = 1 when the nth NP give a positive result in the jth  antibacterial activity assay against the sth 
bacteria specie. The second function gets the values f(s,j) = 1 when the sth bacteria specie was considered as 
a Human pathogen in the jth biological tests. Last, the function f(n,s) = 1 when the nth NP assay and the sth 
MN refers to the same sth bacteria specie. All in all, f(n,c,s,j) = 1 when  f(n,j,s) = f(s,j) = f(n,s) = 1, meaning 
that all the previous conditions appear at the same time f(n,c,s,j) = f(n,j,s)·f(s,j)·f(n,s). Otherwise, f(n,c,s,j) 
= 0 when  f(n,j,s) = 0, f(s,j) = 0, and/or f(n,s) = 0, meaning that at least one of the previous conditions fail. 
All the cases of the W-set were assigned at random to training (set = t) or validation (set = v) series using 
the function f(set) = 1 (set = t) or = 0 (set = v). The t-set was used training the IFPTML model and v-set to 
validate it. In Table S2 we summarize the different partitions of the dataset as result of the application of 
the respective functions.
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Table S2. Data pre-processing functions and cases distribution

Function Value Description n

1 MN sth specie is a Human pathogen 5092
f(s,j)obs

0 MN sth specie is not a Human pathogen 235

1 Positive outcome for nth NP
in jth assay with sth org species

2519

f(n,j,s)obs 
0 Negative outcome for nth NP

in jth assay with sth org species
2808

1 NP nth specie = MN sth specie 904
f(n,s)obs 

0 NP nth specie ≠ MN sth specie 4423

1
Positive outcome for nth NP in jth assay with sth org 

species which is the same than MN sth species
f(n,c,j,s)obs = f(s,j)obs· f(n,j,s)obs· f(n,s)obs

563

f(n,c,j,s)obs

0
Negative outcome for nth NP in jth assay with sth org 

species which is the same than MN sth species
f(n,c,j,s)obs = f(s,j)obs· f(n,j,s)obs· f(n,s)obs

4764

1 Cases used to train the model (set = t) 3213
f(set)obs

0 Cases used to validate the model (set = v) 2114

Total - All cases in data set 5327

Pre-processing of the observed values of NP biological parameters.

 The parameters vnj(cn0) are used to quantify the biological activity of the nth NP-system on the jth assay 
with conditions encoded by the vector cnj = (cn0, cn1, …cnmax). This variable refers to the numerical values 
vnj of different experimental parameters with name cn0 (IC50(µM), MIC(µM), etc.), see Table 5. However, 
as we have multiple cn0 parameters with different units and errors we decided to transform all the vnj(cn0) 
values into the Boolean function f(n,s,j)obs = 1 or 0. This output variable f(n,s,j)obs is the objective function 
to be fitted by the model. In order to define this function we used the original values of biological activity 
vnj(cn0) and the parameters cutoff(cn0) and desirability d(cn0). The parameter cutoff(cn0) is a threshold value 
used to delimit NP with strong vs. weak effects. The parameter desirability d(cn0) get the value d(cn0) = 1 
when the parameters cn0 need to be minimized to obtain an optimal NP, i.e. IC50(µM)  or d(cn0) = 0 
otherwise.  With these parameters we obtained the values of the f(n,s,j) function as follow:  f(n,s,j)obs = 1 
when vnj(cn0)  > cutoff(cn0) and desirability d(cn0) = 1. The value is also f(n,s,j)obs = 1 when vnj(cn0) < 
cutoff(cn0) and desirability d(cn0) = -1, f(n,s,j)obs = 0 otherwise. The value f(n,s,j)obs = 1 point to an strong 
desired effect of the NP over the bacteria specie or strain while f(n,s,j)obs = 0 indicates a weak effect with 
respect to the cutoff used.10 Once we get the values of f(n,s,j)obs for all the NP-set we counted on the total 
number of cases n(f(vij)=1/) and the total number of positive cases n(f(vij)=1/ cn0) for each property (c0n). 
With these parameters we calculated the values of the function of reference f(cn0)ref = 
n(f(vij)=1/)/n(f(vij)=1/cn0). This definition allows us to interpret the function of reference as the prior 
probability f(cn0)ref = p(f(vij)=1/cn0)ref for one NP to have good values of the different parameters cn0. In 
Table 5 we depict the values of the reference function, cutoff, and other parameters used for the different 
biological properties. 
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IFPTML models training and validation.

 We used the software SOFT.PTML to develop alternative IFPTML models for the purpose of 
comparison.8 SOFT.PTML has a user-friendly interface specially designed for the development of IFPTML 
models. The Figure S2 shows SOFT.PTML software interface with the parameters/inputs of the present 
IFPTML NP predictive model. 

Figure S2. SOFT.PTML software interface with the input parameters for IFPTML NP predictive model

PTML NP vs. MNs model

 As we mentioned in the introduction ML techniques are being applied to solve multiple practical problems 
in Nanotechnology.9-14 In this work we focused on the use of IFPTML algorithm to map NP preclinical 
assays vs. MNs structure. During pre-processing phase we were able to build up a W-set NP vs. MNs cases 
involving multiple assay conditions. After calculating the PTOs (input variables) a re-scaling the objective 
function we decided fit different IFPTML models. In first instance, we used the software STATISTICA 6.0 
to run the LDA algorithm in order to seek the IFPTML preliminary model.15 We used FSW procedure as 
variable selection strategy for an automatic selection of the input features. The best PTML-LDA model 
found with FSW presents 8 input variables. The quality of all the IFPTML models found was assessed 
calculating Sn, Sp, Ac, χ2, and the p-level.15 All these parameters were in the correct ranges reported in the 
literature for ML classification techniques. The Sn, Sp, and Ac are >75% in fact, they are in the range 79-
92% overall (including training and validation series). However, we should reconsider using this model in 
practice. The model does not include some important factors such as time of assay, NP coating agent, etc. 
These are factors of the major importance in the experiments and we should not omit them. Changing the 
number of variables in FSW input parameters was not an adequate solution to improve the model. 
Increasing the number of variables includes other variables that are co-linear and contain the same 
information that the variables already on the model. According to Occam’s razor heuristic rule (principle of 
parsimony) we should use the minimal but still relevant features to solve the problem (no more no less).16 
In the inability of FSW strategy to recognize time and coating agents as relevant factor is not probably a 
fail of the technique per se. It is probable due to the low variability of the experimental data at our 
disposition at the moment of creation of the NP-set. In fact, in data pre-processing stage we detected low 
variance values of the PTOs of the missing variables ΔSh(D1c), ΔSh(D2c), and ΔSh(t). Consequently, EGS 
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heuristic was used to retrain the LDA model including both features selected by FSW and relevant missing 
features. First we decided to zip all this information into a modified type of PTOs based on multiple 
Shannon’s entropy information measures ΔSh(D1c, D2c, t). See details on the use of different types of PTOs 
in the literature.2-4 In Table 6, we depict a summary of the statistical parameters for new IFPTML-LDA 
model obtained using EGS heuristic. This model includes all the important variables and has also similar to 
slightly better values of the control parameters Sn, Sp, Ac, χ2, and the p-level.17, 18  The equation of this last 
IFPTML-LDA linear model found using EGS heuristics on the software STATISTICA is the following, 
Equation s1: 

LDA: 𝑓(n, c, j, s)𝑐𝑎𝑙𝑐 = 49.6937 + 1.4522 · 𝑓(cn0)𝑟𝑒𝑓  + 327.9605 · ∆Sh(𝐴𝑀𝑉𝑛)cn j       (𝑠1) 
+23.9501 · ∆Sh(𝐴𝑃𝑆𝑛)cn j + 272.3486 · ∆∆Sh(𝑡, 𝑐1, 𝑐2)cn j  

+151.9395 · ∆Sh(𝛑1)cs j   + 123.5307 · ∆Sh(𝛑2)cs j  
−252.1523 · ∆Sh(𝐿𝑖𝑛 )cs j + 188.5416 · ∆Sh(𝐿𝑜𝑢𝑡 )cs j  

 
Ntrain = 3213   χ2 = 12188.263     p − level < 0.05 

 Next, we used the software SOFT.PTML to develop alternative IFPTML models for the purpose of 
comparison.8 With this second software, specifically designed for us to run IFPTML experiments, we used 
the ML techniques LOGR, RF, and SVM. These ML techniques have been widely used in 
Chemoinformatics and Nanotechnology for classification purposes.9, 11, 19, 20 In Table S3 we summarize the 
results of the different IFPTML models found. The IFPTML-LOGR model found is similar to the 
IFPTML-LDA model reported above. Both models are linear with the same variables. However, the 
models have different coefficients of the variables in terms of magnitude. It is interesting that the sign of 
the coefficients is the same for all the variables except the pair ΔSh(Lins) vs. ΔSh(Louts). In this cases both 
variables interchanges the signs of their coefficients in PTML-LOGR model with respect to PTML-LDA 
model. This can be explained taking into consideration that for networks certain Anabolism-Catabolism 
balance (Lins ≈ Louts) the terms may present certain degree of collinearity. As a consequence the signs of 
ΔSh(Lins) and ΔSh(Louts) by be interchangeable until certain extension. In any case, PTML-LOGR model 
has Ac = 97-96% in training/validation series vs. Ac = 81-82% of the PTML-LDA model. We can 
conclude that the PTML-LOGR model is notably more accurate (15% more) than the PTML-LDA model. 
In this sense, we decided to select the PTML-LOGR model as our best PTML linear model. In addition, we 
can see in Table 6 that the PTML-RF non-linear model outperformed all the linear models with values of 
Sn, Sp, and Ac in the range 96-99.5%.  This make this model the better option for predictive studies but its 
non-linear character makes it a bit more complex. Last, we can note that the SVM showed very high values 
of Sn, Sp, and Ac = 100% in training but resulted to be totally unbalanced (Sp = 100 and Sn = 0%) in 
validation series. As a result we discarded the IFPTML-SVM model for practical use. All in all, the present 
results demonstrate that it is possible to seek IFPTML predictive models for NP vs. bacteria with different 
MNs. These results also validate the use of SOFT.PTML to construct this type of model.

Table S3. IFPTML models results summary

Soft. Algo. Observed class. Predicted classification
STAT LDA Training Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1

FSW f(n,c,j,s)obs = 0 Sp 79.9 2853 717
8 steps f(n,c,j,s)obs = 1 Sn 90.1 42 384

Total Ac 81
Validation Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
f(n,c,j,s)obs = 0 Sp 81 967 227
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f(n,c,j,s)obs = 1 Sn 92 11 126
Total Ac 82.1

LDA f(n,c,j,s)obs = 0 Sp 81.1 2896 674
EGS f(n,c,j,s)obs = 1 Sn 90.1 42 384

8 vars Total Ac 82.1
Validation Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
f(n,c,j,s)obs = 0 Sp 81.7 976 218
f(n,c,j,s)obs = 1 Sn 92 11 126
Total Ac 82.8

PTML LOGR Training Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
SOFT EGS f(n,c,j,s)obs = 0 Sp 99.3 2905 21

8 vars f(n,c,j,s)obs = 1 Sn 79.4 59 228
Total Ac 97.5
Validation Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
f(n,c,j,s)obs = 0 Sp 99.3 1826 12
f(n,c,j,s)obs = 1 Sn 80.8 53 223
Total Ac 96.9

RF Training Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
EGS f(n,c,j,s)obs = 0 Sp 99.5 2912 14

8 vars f(n,c,j,s)obs = 1 Sn 96.9 9 278
Total Ac 99.3
Validation Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
f(n,c,j,s)obs = 0 Sp 99.5 1829 9
f(n,c,j,s)obs = 1 Sn 98.6 4 272
Total Ac 99.4

SVM Training Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
EGS f(n,c,j,s)obs = 0 Sp 100.0 2926 0

8 vars f(n,c,j,s)obs = 1 Sn 100.0 0 287
Total Ac 100.0
Validation Stat. (%) f(n,c,j,s)pred = 0 f(n,c,j,s)pred = 1
f(n,c,j,s)obs = 0 Sp 100.0 1838 0
f(n,c,j,s)obs = 1 Sn 0.0 276 0

  Total Ac 86.9

PTML study of NP-Bacteria resistance vs. MN metabolic topology

The study of the MNs of those bacteria with high resistance to NPs action may give clues for the future 
design of new NP with specific antibacterial activity. As we mentioned before, the values of 
p(f(n,c,j,s)=1)pred are the probabilities with which a given NP is predicted to be active against the bacteria 
with a given MNs. We can interpret these probabilities as a measure of bacterial susceptibility to NPs. 
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Consequently, from the point of view of the MNs those bacteria with low values of p(f(n,c,j,s)=1)pred are 
predicted to be very resistant to the action of the nth NP in the jth assay. Accordingly, a low average value 
p(f(n,c,j,s)=1)avg = <p(f(n,c,j,s)=1)pred> (average of all p(f(n,c,j,s)=1)pred values) for the sth bacteria vs. the 
same NP in different assays indicates that this specie should be very resistant to this NP in particular 
regardless the assay selected. In order to compare the structure of the MNs of different bacteria vs. the 
predicted p(f(n,c,j,s)=1)avg we could use a single numerical parameter of MN metabolic structure (network 
topology). In this work we used 3 numerical parameters related to MNs metabolic structure, Nms, <Lins>, 
and <Louts>. We used these parameters to calculate a unique parameter that fusion all this information. We 
are going to call this parameter as the Anabolism-Catabolism Unbalance (ACUs) index of MNs of the sth 
bacteria specie (see Equation 3). 

𝐴𝐶𝑈𝑠 = 𝛼·
( < 𝐿𝑖𝑛𝑠 > ‒ < 𝐿𝑜𝑢𝑡𝑠 > )

𝑁𝑚𝑠
  (3)

The parameters used to construct ACUs have the following structural meaning in terms of graph theory. 
The parameter Nms = number of nodes, <Lins> = average in-degree, and <Louts> = average out-degree of all 
nodes in the graph. The number of nodes coincides with the number of metabolites (Nms) in the MN of the 
sth organism. The index Lin is used to count all the arrows that reach (get in) a node into a complex network. 
In the context of MNs the Lin is the number of metabolites that are precursors (educts) of the query 
metabolite (m). By analogy, Lout is the number of metabolites that are products (adducts) of a metabolic 
reaction with the query metabolite as precursor. 5, 21, 22 That is way we used <Lins> as a measure of the 
Anabolism and <Louts> as a measured of the Catabolism of the MNs of this bacteria. Consequently, we can 
use the difference (<Louts> – <Lins>) as a measure of the unbalance of the anabolic vs. the catabolic 
metabolism in the network. We have not found a direct reference to this specific parameter in the literature. 
However, similar parameters based on differences between Lout and Lin have been used before to measure 
the unbalance of the flow in networks.23 The number α = 10 is used as scaling factor here to transform 
ACUs into the same scale than <p(f(n,c,j,s)=1)pred> for further comparison. In Table S4 we depict the 
values of p(f(n,c,s,j)=1)avg, Nms, <Louts>, <Lins>, and AUCs of all the MNs studied along with other 
biologically relevant information. Almost all the human pathogenic bacteria studied presented 
p(f(n,c,s,j)=1)avg < 0.5 meaning that they are resistant to the action of NP on average. The specie 
Mycoplasma pneumonia (MP) predicted to be the more resistant (p(f(n,c,j,s) < 0.5) to NP. MP is the unique 
specie in the W-set with ACUs < 0.5. MP is a Gram negative (G-) bacterium causing respiratory system 
(RES) infections. The bacterium Helicobacter pylori (HP) is predicted to be the more resistant (p(f(n,c,j,s) 
< 0.5) to NP action and counts among those with ACUs > 0.5, the majority of bacteria on this dataset. HP 
is a Gram negative (G-) bacteria causing systemic (SYS) infection. These values should be taken with 
caution remember that we are comparing average values and one species and/or strain may be susceptible 
to a particular NP in one specific assay. Consequently, we recommend using them only as a general guide 
to discover trends on the behavior of NP vs. different bacteria species. In this sense, a closer inspection of 
the predictions for all pairs NP vs. MNs should give a more accurate picture.

Table S4. PTML NP prediction results vs. MNs topology

Bacteria Biological Information a Numerical parameters
MN Org. H.P. G(+/-) Pathog. PTML MN Topology

Ns Code f(s,j)obs cs1 cs2 p(f(n,c,s,j)=1)avg Nms <Lins> <Louts> ACUs

1 AB 1 G- GIT 0.20 395 1202 1166 0.91
4 CJ 1 G- GIT 0.06 380 1142 1115 0.71
8 EC 1 G- GIT 0.55 778 2904 2859 0.58
11 HP 1 G- GIT 0.07 375 1181 1144 0.99
9 EF 1 G+ GIT 0.05 386 1244 1218 0.67
15 MP 1 G- RES 0.00 178 470 466 0.22
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16 MT 1 G- RES 0.12 587 1862 1823 0.66
12 MB 1 G+ RES 0.02 429 1247 1221 0.61
21 PN 1 G+ RES 0.09 416 1331 1298 0.79
24 ST 1 G+ RES 0.13 403 1300 1277 0.57
6 CT 1 G- SYS 0.03 215 479 462 0.79
10 HI 1 G- SYS 0.44 526 1773 1746 0.51
17 NG 1 G- SYS 0.02 406 1298 1270 0.69
18 NM 1 G- SYS 0.02 381 1212 1181 0.81
19 PA 1 G- SYS 0.90 734 2453 2398 0.75
20 PG 1 G- SYS 0.04 424 1192 1156 0.85
14 ML 1 G+ SYS 0.03 422 1271 1244 0.64
25 TY 1 G+ SYS 0.70 819 3008 2951 0.70
23 SC 0 G- NO 0.20 561 1934 1889 0.80
2 BS 0 G+ NO 0.80 785 2794 2741 0.68
3 CA 0 G+ NO 0.08 494 1624 1578 0.93

a MN Ns = MN Numerical label. Org. Code = Organism Two-Letters code (see full list in Materials and Methods).  H.P. = 
Human pathogen bacteria  (f(s,j)obs = 1). G(+/-) = Gram staining (cs1), G+ = Gram positive, G- = Gran negative. Pathog. = 

Pathogenicity (cs2), SYS = Systemic, GIT = Gastro-Intestinal Track, RES = Respiratory System, NO = Non pathogenic bacteria.

  In order to give this closer picture we decided to compare both the observed and calculated values of 
probability p(f(n,c,j,s)=1)ns. The p(f(n,c,j,s)=1)ns are the values of probability of success of the nth NP in all 
assays with using the same sth MN of a given bacteria specie. This study shall give us also a closer view of 
the predictive power of IFPTML-LOGR and IFPTML-RF models. The values of p(f(n,c,j,s)=1)ns are 
essentially different from p(f(n,c,j,s)=1)avg. The values p(f(n,c,j,s)=1)avg are the average value of the 
predicted probabilities for wide groups of bacteria species. The values of p(f(n,c,j,s)=1)ns are both observed 
and predicted values for NPn vs. MNs specific pairs. We can get this parameter as p(f(n,c,j,s)=1)ns = 
n(f(n,c,s,j)=1/n,s)/n(n,s). In this formula n(f(n,c,s,j)=1/n,s) is the number of success cases. The parameter 
n(n,s) is the total number of cases given that the pair NPn vs. MNs have been used on the preclinical assays. 
We obtained both the observed and the calculated versions of p(f(n,c,j,s)=1)ns using the two IFPTML 
models. The full table appears on the Supporting Information file SI00.xlsx, ACU sheet. Notably, both 
models PTML-LOGR and PTML-RF are very accurate to discard near to 100% of cases of negative results 
for NPn vs. MNs pairs (cases in bold face). However, PTML-RF is above 15% better than PTML-LOGR 
indentifying experimentally confirmed positive cases for NPn vs. MNs pairs (fails are bold face and red 
color highlighted).
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