An Enzyme-Mediated Universal Fluorescence Biosensor Template for Pathogen

Detection Based on Three-dimensional DNA Walker and Catalyzed Hairpin

Assembly

Dan Li[†], Enlai Yang[†], Zewei Luo[‡], Qiyue Xie[†], Yixiang Duan^{†, *}

[†] Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of

Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China

[‡] Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of

Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shanxi, P.R. China

Table of contents

Content	Page
Table S1. Sequences used in this work	S3
Table S2. Comparison results of different methods for <i>S.ty</i> and <i>E.coli</i> detection	S4
Table S3. The sequences of S.ty and E.coli primers of qPCR	S5
Table S4. Reaction system for qPCR	S5
Table S5. The detection results of the natural samples by the proposed biosensor	S6
Figure S1. Standard linear calibration curve of <i>S.ty</i> and <i>E.coli</i>	S7
Figure S2. Standard linear calibration curve of qPCR	S8
Figure S3. DLS results of the AuNPs and PolyA-AuNPs	S9
Figure S4. Verification aptamer specificity of <i>S.ty</i>	S10
Figure S5. Optimization of key parameters	S11
Figure S6. Fluorescence kinetic curve of <i>S.ty</i> in real-time monitor	S12
Figure S7. The relationship between <i>S.ty</i> concentration and fluorescence intensity	S13
Figure S8. PAGE image of verifying the <i>E.coli</i> detection feasibility	S14
Figure S9. Verification aptamer specificity of <i>E.coli</i>	S15
Figure S10. Effect of surface coverage	S16
Figure S11. Fluorescence kinetic curve of <i>E.coli</i> in real-time monitor	S17
References	S18

Tables

 Table S1. DNA sequences used in this experiment.

Sequence (5'-3')
TATGGCGGCGTCACCCGACGGGGGACTTGACATTATGACAG
GACGCCGCCATAACCAGCTGAGGAG
TGAGCCCAAGCCCTGGTATGTTACAGTATGCTACCTCTACTTGAAG
GTTGGTCGACGCGGGGGCAGGTCTACTTTGGGATC
CATACCAGGGCTTGGGCTCAACCAGCTGAGGAG
AAAAATATTAACCCTCCTCAGCTGGTTAATAGTCCGAAT
AAAAAAAAATATTAACCCTCCTCAGCTGGTTAATAGTCCGAAT
AAAAAAAAAAAAAAAAAAAATATTAACCCTCCTCAGCTGGTTAAT
AGTCCGAAT
ААААААААААААААААААААААААААААААААТАТТААСССТССТ
AGCTGGTTAATAGTCCGAAT
ААААААААААААААААААААААААААААААААААААААА
TAACCCTCCTCAGCTGGTTAATAGTCCGAAT
SH-TTTTTTATTAACCCTCCTCAGCTGGTTAATAGTCCGAAT
GCACAGAGACATTCGGACTATTAACCAGCTGAACTCTGGTATCTG
GTCTCAGCTGGTTAATAGTCTTGAGTTAGAGCAG
CCAGCTGAGAACCAGAGTTCAGCTGGTTAATAGT
FAM-AACTCAAGACTATTAATGTGGCAA
TAGTGTTAGTCTTGAGTT-DABCYL

Table S2. Comparison results of different methods for *S.ty* and *E.coli* detection.

Target	Method	LOD (CFU mL ⁻¹)	Reaction Time	Ref.
	ICP-MS	100	40 min	1
	FOLSPR biosensor	128	2 h	2
S.ty	Colorimetric detection	42	3 h	3
	microfluidic biosensor	58	2 h	4
	LIBS	61	65 min	5
	Fluorescence biosensor	22.8	85 min	This work
	SERS	1000	No mentioned	6
	Electrochemical biosensor	100	3 h	7
E.coli	Colorimetric detection	50	1 h	8
		100	140	9
	Biomimetic receptors	100	140 min	,
	Biomimetic receptors Fluorescence biosensor	100 28.1	85 min	This work

a. S.ty and E.coli detection methods with higher LOD than this work.

Target	Method	LOD (CFU mL ⁻¹)	Reaction Time	Ref.
	PCR	7-9	<5 h	10
S.ty	Immunology-based assay	10	No mentioned	11
	SERS	4	130 min	12
	Interferometric Reflectance Imaging	2.2	2 h	13
E.coli	LIBS	8.89	135 min	14
	SERS	1	45 min	15

b. *S.ty* and *E.coli* detection methods with lower LOD than this work.

Table S3. The sequences of *S.ty* and *E.coli* primers of qPCR.

Primers	Sequence (5' - 3')	Product size (bp)
Forward primer	ATTTCTGGATATGGTACTGAGGC	102
Reverse primer	AAATGAGTTGCTTTACGCTGC	125
	a. The primer sequences of S.ty.	

Primers	Sequence (5' - 3')	Product size (bp)
Forward primer	TGTTCTGACTGGTGACGTGAAA	106
Reverse primer	TGCTTGGTCGGGATAGTGG	120

b. The primer sequences of *E.coli*.

 Table S4. Reaction system for qPCR.

Reagents	Volume (µL)	
Distilled water	3.2	
SYBR green real-time PCR master mix	5	
Forward primer (10 µM)	0.4	
Reverse primer (10 µM)	0.4	
DNA template	1	
Total volume	10	
		-

Table S5. The detection results of the natural samples by the proposed biosensor.

Natural samples	Detected by qPCR (CFU mL ⁻¹)	Detected by the biosensor (CFU mL ⁻¹)

Rain-water	Negative	BDL
Tap-water	Negative	BDL
Pool water	Negative	BDL

a. The detection results of *S*.*ty* in natural samples.

Natural samples	Detected by qPCR (CFU mL ⁻¹)	Detected by the biosensor (CFU mL ⁻¹)
Rain-water	Negative	BDL
Tap-water	Negative	BDL
Pool water	Negative	BDL
Tap-water Pool water	Negative Negative	BDL BDL BDL

b. The detection results of *E.coli* in natural samples.

"BDL" means that natural sample signals are below detection limit.

Figures

Figure S1. Standard linear calibration curve for *Salmonella Typhimurium* (A) and *Escherichia coli* (B). Each OD₆₀₀ was repeated for three times.

Figure S2. The relationship between the bacteria concentration and the valve of Cq. (A) The relationship between the different *S.ty* concentration and the valve of Cq. (B) The relationship between the different *E.coli* concentration and the valve of Cq. All experiments were repeated three times.

Figure S3. The DLS results of the bare AuNPs, PolyA₅-DNA-AuNPs, PolyA₁₀-DNA-AuNPs, PolyA₂₀-DNA-AuNPs, PolyA₃₀-DNA-AuNPs and PolyA₄₀-DNA-AuNPs.

Figure S4. PAGE band intensity changes of the aptamer specificity for detecting different bacteria. Reaction conditions: 16 µL (3 µM) Apt,

16 μL (1 $\mu M)$ c-Apt, 20 μL (10 3 CFU mL $^{-1}$) S.ty, E.coli, S.a, Y.e, S.s.

Figure S5. Optimization of key parameters. (A) Fluorescence analysis of Apt/c-Apt at different molar ratios, including 1:1, 2:1, 3:1, 4:1, 5:1 and 6:1. Reaction conditions: 16 μ L Apt including 1 μ M, 2 μ M, 3 μ M, 4 μ M, 5 μ M, 6 μ M; 16 μ L (1 μ M) c-Apt, 20 μ L (10³ CFU mL⁻¹) *S.ty* and 16 μ L H1, 16 μ L H2, 32 μ L F@Q and 0.06 U μ L⁻¹ Nt.BbvCI. (B) Effect of reaction time. Reaction conditions: 16 μ L (3 μ M) Apt, 16 μ L (1 μ M) c-Apt, 20 μ L (10³ CFU mL⁻¹) *S.ty* (1 μ M) c-Apt, 20 μ L (10³ CFU mL⁻¹) *S.ty*, 16 μ L PolyA10-DNA-AuNPs; 16 μ L H1, 16 μ L H2, 32 μ L F@Q and 0.06 U μ L⁻¹ Nt.BbvCI using different reaction time.

Figure S6. The fluorescence kinetic curve in real-time monitor. (A) $PolyA_5$ -DNA-AuNPs; (B) $PolyA_{10}$ -DNA-AuNPs; (C) $PolyA_{20}$ -DNA-AuNPs; (D) $PolyA_{30}$ -DNA-AuNPs; (E) $PolyA_{40}$ -DNA-AuNPs; (F) SDAs; (G) MSDAs. Reaction conditions: 16 µL (3 µM) Apt, 16 µL (1 µM) c-Apt, 20 µL *S.ty* with different concentration, 16 µL PolyA-DNA-AuAPs with different length, 16 µL H1, 16 µL H2, 32 µL F@Q and 0.06 U µL⁻¹ Nt.BbvCI.

Figure S7. The relationship between the *S.ty* concentration and the fluorescence intensity change at 520 nm. (A) PolyA₅-DNA-AuNPs; (B) PolyA₁₀-DNA-AuNPs; (C) PolyA₂₀-DNA-AuNPs; (D) PolyA₃₀-DNA-AuNPs; (E) PolyA₄₀-DNA-AuNPs; (F) SDAs; (G) MSDAs. Reaction conditions: 16 μ L (3 μ M) Apt, 16 μ L (1 μ M) c-Apt, 20 μ L *S.ty* with different concentration, 16 μ L PolyA-DNA-AuAPs with different length, 16 μ L H1, 16 μ L H2, 32 μ L F@Q and 0.06 U μ L⁻¹ Nt.BbvCI.

Figure S8. PAGE image of verifying the feasibility. Lane 1: 16 μ L (3 μ M) Apt; Lane 2: 16 μ L (1 μ M) c-Apt; Lane 3: lane 1 + lane 2; Lane 4: lane 3 + 20 μ L (10³ CFU mL⁻¹) *E.coli*; Lane 5: 16 μ L PolyA₁₀-DNA, Lane 6: 16 μ L c-Apt + lane 5; Lane 7: lane 4 + lane 5; Lane 8: lane 7 + 0.06 U μ L⁻¹ Nt.BbvCI; Lane 9: lane 8 + 16 μ L H1; Lane 10: lane 9 + 16 μ L H2; Lane 11: lane 10 + 32 μ L F@Q; Lane 12: 16 μ L H1; Lane 13: 16 μ L H2; Lane 14: lane 12 + lane 13; Lane 15: 32 μ L F@Q.

Figure S9. PAGE band intensity changes of the aptamer specificity for detecting different bacteria. Reaction conditions: 16 μL (3 μM) Apt, 16 μL (1 μM) c-Apt, 20 μL (10³ CFU mL⁻¹) *E.coli, S.ty, S.a, Y.e, S.s.*

Figure S10. Effect of surface coverage on the performance of biosensor system. (A) Comparison of kinetic parameters of Nt.BbvCI in different length of PolyA; (B) The comparison of the specificity constant of Nt.BbvCI in solution; (C) The programmable change of Vmax with the change of the surface coverage. All experiments were repeated five times.

Figure S11. The fluorescence kinetic curve in real-time monitor. (A) PolyA₅-DNA-AuNPs; (B) PolyA₁₀-DNA-AuNPs; (C) PolyA₂₀-DNA-AuNPs; (D) PolyA₃₀-DNA-AuNPs; (E) PolyA₄₀-DNA-AuNPs. Reaction conditions: 16 μL (3 μM) Apt, 16 μL (1 μM) c-Apt, 20 μL *E.coli* with different concentration, 16 μL PolyA-DNA-AuAPs with different length, 16 μL H1, 16 μL H2, 32 μL F@Q and 0.06 U μL⁻¹ Nt.BbvCI.

References

- 1 Y. Lin and A. T. Hamme Ii, J. Mater. Chem. B, 2015, 3, 3573-3582.
- 2 Y. Xu, Z. Luo, J. Chen, Z. Huang, X. Wang, H. An and Y. Duan, Anal. Chem. 2018, 90, 13640-13646.
- 3 X. Wang, Z. Luo, Z. Huang, Q. Xie, M. Wu and Y. Duan, Anal. Chim. Acta, 2020, 1139, 138-145.
- 4 S. Wang, L. Zheng, G. Cai, N. Liu and J. Lin, Biosens. Bioelectron. 2019, 140, 111333.
- 5 E. Yang, W. Liao, Q. Lin, H. An, D. Li and Y. Duan, Anal. Chem. 2020, 92, 8090-8096.
- 6 K. Whang, J. Lee, Y. Shin, W. Lee, Y. Kim, D. Kim, L. Lee and T. Kang, Analyst, 2018, 7, 716-724.
- 7 J. Zhang, J. Wang, Q. Xiao and F. He, Biosens. Bioelectron. 2018, 118, 9-15.
- 8 L. Zheng, G. Cai, S. Wang, M. Liao, Y. Li and J. Lin, Biosens. Bioelectron. 2018, 124, 143-149.
- 9 C. Peter, G. Stella, Y. Derick, I. Heiko, D. Sam and W. Patrick, Biosens. Bioelectron. 2019, 136, 97-105.
- 10 M. Fachmann, C. LoFstroM, J. Hoorfar, F. Hansen, J. Christensen, S. Mansdal and M. Josefsen, *Appl. Environ. Microb.* 2016, 83, e03151-03116.
- 11 C. Wen, J. Hu, Z. Zhang, Z. Tian, G. Ou, Y. Liao, Y. Li, M. Xie, Z. Sun and D. Pang, Anal. Chem. 2013, 85, 1223-1230.
- 12 E. Yang, D. Li, P. Yin, Q. Xie, Y. Li, Q. Lin and Y. Duan, Biosens. Bioelectron. 2021, 172, 112758.
- 13 Z. Negin, E. Fulya, M. Abdul, S. Emily, T. Matthew, L. Nese, Y. Ayca, R. Julia and M. SelimE, Biosens. Bioelectron. 2020, 162, 112258.
- 14 C. Gondhalekar, E. Biela, B. Rajwa, E. Bae and J. Robinson, Anal. Bioanal. Chem. 2020, 412, 1291-1301.
- 15 S. You, K. Luo, J. Jung, K. Jeong and Y. Kim, ACS Appl. Mater. Inter. 2020, 12, 18292-18300.