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1. Experimental

1.1.  Method

Synthesis of TiO2 hollow spheres: TiO2 hollow spheres are synthesized through the 

‘wet conversion’ method. In our experiment, 1 ml industrial titanyl sulfate solution 

(c(TiOSO4) = 480 g L-1, c(Fe2+) = 48 g L-1, c(Mn2+) = 0.77 g L-1) used in our previous 

work1, and 18 g H2SO4 (c(H+) =1 mol L-1) were added in 800 mL deionized water at 

35 ℃. Then, 0.1 g Al powder (50-200 nm in diameter, Hongwu New Material) was 

added and stirred for 3 hours until the solution turned from dark gray to light gray. 

After filtrating and drying, the sample was added to the 50 mL NaOH（0.2 mol L-1) 

in 500 mL deionized water and stirred overnight. Finally, TiO2 hollow sphere was 

obtained by filtration and drying process. 

Synthesis of TiO2@C materials: TiO2 precursors were dispersed in Tris-buffer 

solution (0.1 M, 100 mL) by sonication, and then 0.1 g dopamine hydrochloride were 

added and stirred for 3 hours at room temperature. After centrifuging and washing 

with deionized water and ethanol for three times, respectively, the sample was 

collected and further dried at 60 ℃ overnight. Finally, the precursors were obtained 

by annealing at 400 ℃ for 3 h in an Ar/H2 atmosphere.    

1.2.  Material characterization

The X-ray diffraction measurements were conducted on Rigaku D/max 2500 using 
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Cu Ka radiation and the 2θ range of tests was from the range of 10°-90°. Raman and 

XPS measurement were performed by Renishaw RM1000 micro spectroscopic system 

and Thermo K-Alpha XPS spectrometer respectively. Thermogravimetric analysis 

(TGA) was performed in the air with the temperature range from 30 °C to 800 °C. 

The materials morphologies were measured by FESEM (Hitachi S-4800) and TEM 

(JEM-2010 JEOL, 200 kV). Brunauer-Emmett-Teller (BET) specific surface areas 

were obtained using a JW-BK200C Surface Area and Pore size Analyzer (Beijing 

JWGB Sci. & Tech. Co., Ltd) at the liquid-nitrogen boiling point (77 K).

1.3.  Electrochemical measurements

The lithium storage performances of all samples were characterized by fabricating 

CR2032 coin-type half-cells in an Ar glove box. The anode electrode was prepared by 

mixing the active material with super P and polyvinylidene fluoride (PVDF) 

according to a mass ratio of 6:2:2 in N-methyl-2-pyrrolidone. The obtained slurry was 

cast onto a copper (Cu) foil and then dried at 110 °C under vacuum for 12 h. 

Generally, the mass loading of the active material is about packing density of ∼0.5 

mg cm-2. A solution of 1 M LiPF6 in EC: DMC: EMC=1:1:1 Vol% is selected as the 

electrolyte. CV measurements were carried out by a CHI660E electrochemical 

workstation. LAND-BT2013A measurement system is responded for testing cycling 

performance and rate capacity at 25 ℃.



Fig. S1 XRD patterns of precursors at different stages (a) and TiO2 (b) annealed at 

700 oC.

Fig. S2 High resolution XPS spectra of Ti 2p (a), O 1s (b), C 1s (c), N 1s (d) in 
TiO2@C, respectively. 



Fig. S3 SEM images of (a) Al powers, (b)TiO(OH)2@Al; (c)-(d) TEM images of pure 
TiO2; (e) elemental mapping images of Ti and O of TiO2 hollow spheres.

Fig. S4 (a) Cyclic voltammogram of pure TiO2 at a scanning rate of 0.2 mV s-1; (b) 
Charge/discharge curves of pure TiO2 at 0.1 A g-1; (c) the rate capability and the cycle 
performances of rutile TiO2; (d) the initial charge-discharge curve of TiO2@C after 
chemical prelithiation.



Fig. S5 (a) Nitrogen adsorption/desorption isotherms of TiO2 and TiO2@C; (b) 
Barrett-Joyner-Halenda (BJH) pore size distribution curves for TiO2 and TiO2@C.

Fig. S6 (a) CV curves of TiO2 at different scan rates; (b) Log (i) versus log (v) plots at 
different cathodic/anodic peaks for TiO2; (c) Contribution of the surface-driven 
process at 0.6 mV s-1 in TiO2; (d) Capacitance contribution of TiO2 at different scan 
rates.



Fig. S7 (a) CV curves of TiO2@C at different scan rates; (b) Log (i) versus log (v) 
plots at different cathodic/anodic peaks for TiO2@C; (c) Contribution of the surface-
driven process at 0.6 mV s-1 in TiO2@C; (d) Capacitance contribution of TiO2@C at 
different scan rates.

Fig. S8 EIS of pure TiO2 and TiO2@C after 3 cycles at 0.1 A g-1.

Fig. S9 SEM image of TiO2@C composites after 2000 cycles.
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