ARTICLE

Supporting information

Figure SI 1 Complete set of GIXRD plots of Hf1-xZrxO2 sputtered films under various oxygen ambient as deposited and after 800 °C anneal. The scale of as-deposited and annealed films is not true to scale for a better visibility of the as-deposited films.

Figure SI 2 With Williams-Hall analysis determined crystallite diameter of the as deposited and 800 °C annealed films for the different (o+t)-phase fraction. Depending on oxygen concentration the dominant phase is used, 0 sccm flow and 1.25 sccm the 30.5° o(111) diffraction peaks.

The biaxial film stress Figure 9 b) is calculated by the $\sin^2(\Psi)$ method using the o(111) peak.^{31,32} Young's modulus of 284 GPa and a Poisson ratio of 0.6 is used. ³³ Since with increasing oxygen amount the o(111) signal becomes lower, the intensity is strongly decreasing when Ψ (angle between the surface normal and scattering vector) is increased. Therefore stress measurements became complicated and inaccurate. Thus the measurement is stopped at 2 sccm oxygen.

The unit cell volume in Figure SI 3 is calculated by using the GIXRD pattern of Figure SI 1 and the o(111) and o(002) peak. The unit cell volume is increasing for increasing oxygen and ZrO_2 concentration. In the ZrO_2 rich regime the unit cell in oxygen rich PVD is much higher than in stoichiometric ALD HZO. This is indicating a compressive stress induced by oxygen interstitials.

Figure SI 3 Comparison of the unit cell volume extracted from the GIXRD pattern of the sputtered $H_{1,x}Zr_xO_2$ films and ALD deposited Hf1-xZrxO2 films

From literature it is known, that increasing anneal temperatures in sputtered HfO₂ and increasing oxygen supply during deposition increase the compressive film stress.⁵¹ The compressive film stress in thin films can cause buckling and finally film delamination as observed in Figure 11 for oxygen and ZrO₂ rich HZO films.⁵² The expansion of the unit cell volume for higher oxygen supply shown in Figure SI 3 matches the DFT calculation indicating an incorporation of oxygen interstitials. An ALD reference Hf_{0.5}Zr_{0.5}O₂ shows in the ZrO₂ rich regime lower unit cell volumes and no general trend to increase with higher ZrO₂ concentration. The stress effect might be higher in the sputtered films than in the ALD films since they have to be annealed at 800 °C whereas the ALD films are typically annealed at 600 °C. Additionally the density of the thin films is about ~20-30 % higher for the PVD deposited films compared to the ALD deposited films (Table SI 1). Higher film densities are well known to cause compressive strain.53

Table SI 1 Density of PVD and ALD deposited HfO₂

	PVD 0	PVD 2		
	sccm	sccm	ALD 10 S	ALD OU S
Develter				
Density	10 3	12.06	85	8 99
[g/cm³]	10.5	12.00	0.5	0.55

Figure SI 4 As captured top view SEM pictures of the 42 % ZrO₂ ratio and at a) 0 sccm and b) 5 sccm oxygen flow

To measure the grain size of the annealed films residual TiOx from the TiN top layer has to be removed. The samples were etched in 5 % hydrofluoric acid (HF) for 15 min to remove this TiOx. Since the crystalline HfO_2 has low etching rates in HF the HfO_2 should not be affected strongly. The grain diameter was measured by Gwyddion software from the top view SEM pictures (Figure SI 44) after aligning the contrast and brightness.