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Supplementary Materials
Supplementary Note 1 | Lorentz imaging at conditions for under-, in- and over-
focus. 

Figure S1 | Lorentz imaging at different focus modes. Lorentz images of the transient magnetic grating at (a) under-
focus (-5 mm), (b) in-focus (0 mm), and (c) over-focus (+5 mm). A contrast reversal is observed between Fig S1(a) 
and Fig S1(c). The results were recorded under an external magnetic field 𝜇0Hext = 250 mT and by applying sample tilt 
angles 𝛼 = 3⁰ and 𝛽 = 0⁰. (d-f) FFTs of the micrographs in (a-c). The yellow dashed circles in (d) and (f) indicate the 
relevant periodicity for the transient magnetic grating.
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Supplementary Note 2 | Formation of the Transient Optical Grating 
  

Figure S2 | (a) Optical geometry relevant for the formation of a transient optical grating at the sample. All 
parameters in the figure are defined in the text below. (b) Calculated and experiment results of the periodicity, d,  
for the optical grating.

Careful alignment of the pump laser beam to the edge of the electron transparent membrane grid 
will split the laser beam into two paths. The direct laser beam and the beam reflected from the 
slanted side face of the membrane window will interfere at the membrane sample plane. The 
condition for constructive wave interference determines the spatial period of the transient optical 
grating. The incident laser beams, marked as green arrows, are parallel. The reflecting slanted side 
face and the thin film sample plane are marked in red. Relevant geometrical parameters are defined 
in Fig. S2. By applying the conditions for constructive interference and phase shift upon reflection 
we can formulate an expression for the optical path difference between the direct and reflected 
beams for the N order (bN):
                                      

                                   (S1) 
 𝑏𝑁 = (𝑁 +

1
2) ∙ 𝜆 =

(𝑎 + 𝑐)
𝑐𝑜𝑠(Φ)

∙ (1 ‒ 𝑠𝑖𝑛(Ψ))

The equivalent expression for the N+1 order:
 

    (S2)                         
𝑏𝑁 + 1 = (𝑁 + 1 +

1
2) ∙ 𝜆 =

(𝑑𝑠 + 𝑎 + 𝑐 + 𝑒)
𝑐𝑜𝑠(Φ)

∙ (1 ‒ 𝑠𝑖𝑛(Ψ))

 

     
       𝑏𝑁 + 1 ‒ 𝑏𝑁 = 𝜆 =

(𝑑𝑠 + 𝑎 + 𝑐 + 𝑒)
𝑐𝑜𝑠(Φ)

∙ (1 ‒ 𝑠𝑖𝑛(Ψ)) ‒
(𝑎 + 𝑐)
𝑐𝑜𝑠(Φ)

∙ (1 ‒ 𝑠𝑖𝑛(Ψ))

(S3)
Which means  

            (S4)                                                                                  
(𝑑𝑠 + 𝑎 + 𝑐 + 𝑒) - (𝑎 + 𝑐) = 𝑑𝑠 + 𝑒 =

𝜆𝑐𝑜𝑠(Φ)
1 ‒ 𝑠𝑖𝑛(Ψ)

Where , , and φ = 35⁰, and α is defined as the sample tilt angle Φ = 𝜋/2 - 2𝜑 + 𝛼 Ψ = 𝜋/2 - 2𝜑 - 2𝛼
around the X axis. From geometrical considerations we find:
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                                                   (S5) 

𝑑𝑠

𝑑1
=

𝑎
𝑎1

=
𝑑𝑠

𝑒 𝑠𝑖𝑛(𝜑)

And

                                         (S6)  𝑎 ∙ sin (Φ) = 𝑎1 ∙ 𝑠𝑖𝑛(𝜑 + 𝛼)
                    

                                                           (S7) 
𝑒 =

𝑠𝑖𝑛(Φ)𝑠𝑖𝑛(𝜑)
𝑠𝑖𝑛(𝜑 + 𝛼)

∙ 𝑑𝑠

                                                              
As shown in Fig. S2, ds is the distance between the N and N+1 order beams, which is the spatial 
periodicity of the interference fringes at the sample plane. As the sample is tilted by an angle , the 𝛼
spatial periodicity of the transient optical grating d at the detector plane is the projection of ds onto 
the detector plane:

                                                                     (S8)𝑑 = 𝑑𝑠 ∙ 𝑐𝑜𝑠(𝛼)

Combining Eq. S4 , Eq. S7 and Eq. S8 results the following expression:
 

                                                                    (S9)

𝑑 =

𝜆 ∙ 𝑠𝑖𝑛(2𝜑 + 𝛼)𝑐𝑜𝑠(𝛼)
1 - 𝑐𝑜𝑠(2𝜑 + 2𝛼)

1 +
𝑐𝑜𝑠(2𝜑 + 𝛼)𝑠𝑖𝑛(𝜑)

𝑠𝑖𝑛(𝜑 + 𝛼)
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Supplementary Note 3 | Transient Magnetic Contrast at Different Laser 
Wavelength
 

Figure S3 | (a-b) Comparison of Lorentz UEM images from transient magnetic contrast formed from excitation by 
transient optical gratings using laser wavelengths of = 1030 nm (a) and = 515 nm (b) with the same tilt angle 𝛼 = 𝜆 𝜆
3⁰, 𝛽 = 0⁰. The dimensions of two images are both 28 μm × 14 μm. The spatial periodicity dIR = 1180 nm in (a) is twice 
the periodicity dGREEN = 590 nm in (b).
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Supplementary Note 4 | Time dependent local sample temperature  

Figure S4 | (a) Calculated time dependent local temperatures in sample regions of constructive (upper curves) and 
destructive (lower curves) interference of the transient optical grating at laser wavelengths = 248 nm (blue), = 515 𝜆 𝜆
nm (green), and = 1030 nm (red) with the same tilt angle 𝛼 = 3⁰, 𝛽 = 0⁰. (b) Corresponding temperature differences 𝜆
between constructive and destructive regions in (a).

The following assumptions were used in the simulations of the time dependent local temperatures 
shown in Fig. 5(a) in the main text and Fig. S4. The initial spatial temperature distribution 
(immediately following photoexcitation) shown in Fig. 3h of the main text was used as an initial 
condition for the simulations. We use periodic boundary conditions with a spatial periodicity d 
determined according to Supplementary Note 2. For excitation at a laser wavelength = 515 nm 𝜆 
and a tilt angle 𝛼 = 3⁰, 𝛽 = 0⁰, we arrive at a periodicity of the thermal grating d = 590 nm. The 
thermal diffusivity of Ni80Fe20 is  = 8.7 mm2/s (45). The time dependent temperature distribution 𝛼0

was obtained by solving the one-dimensional heat equation (S10):

                                                                                                              (S10)                                                                         ∂𝑇 ∂𝑡 =  𝛼0∇2𝑇

Fig. S4(a) shows the time dependent local temperature in sample regions of constructive (upper 
curves) and destructive (lower curves) interference of the transient optical grating at laser 
wavelengths  = 248 nm (blue),  = 515 nm (green), and  = 1030 nm (red). Fig. S4(b) shows the 𝜆 𝜆 𝜆
corresponding temperature differences between constructive and destructive regions in Fig. S4(a).
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Supplementary Note 5 | Analysis of Oscillating Magnetic Moments

In this note, we describe the Lorentz contrast mechanism of the magnetic precession induced by the 
transient optical grating. The experimental conditions are adapted from Fig. 5(d) in the main text. 

The local sample temperature, T, is assumed to be linearly dependent on the local laser fluence: 

  ,                        (S11)𝑇 = 𝑎𝑇 + 𝑇𝑟𝑖𝑠𝑒 +  ∆𝑇 = 𝑎𝑇 + 𝑏𝑇 ∙ 𝐹 + 𝑐𝑇 ∙ 𝐹𝐿

where aT = 293 K is the sample temperature with no pump laser. , represents the 𝑇𝑟𝑖𝑠𝑒 = 𝑏𝑇 ∙ 𝐹
temperature increase of the sample region at negative time delays due to the lingering optical power 
absorbed in the pump region of the sample during pump-probe analysis. Trise may be estimated from 
applying Weiss molecular field theory to the decrease in magnetic Lorentz contrast at negative time 
delays from a magnetic vortex grown on a similar TEM grid (27). From considering a similar 
sample geometry as in reference (27) and the repetition rate used in the present experiments (35 
kHz), bT can be estimated to approximately 4 K·cm2/mJ. A laser fluence of F = 9 mJ/cm2 will then 

result in a Trise of approximately 36 K. The term  corresponds to the rapid local ∆𝑇 = 𝑐𝑇 ∙ 𝐹𝐿
temperature increase of the lattice after the recombination of the photoexcited electronic carriers (a 

few ps after photoexcitation (46)).  is the local laser fluence on the sample that is spatially 𝐹𝐿

periodic due to the nature of the transient optical grating.  is determined from sample-specific 𝑐𝑇
parameters: thickness, density, absorption coefficient, and heat capacity. The absorption coefficient 
of Ni80Fe20 at 515 nm is approximately 50% (from reflectivity measurements), the density ρ = 8.90 
g/cm3, the heat capacity cp = 0.445 J/g∙K (45), and the sample thickness 50 nm. Taken together this 
results in cT = 25.2 K·cm2/mJ, or a local temperature jump ∆T = 25.2 K for a local laser fluence of 
F = 1 mJ/cm2. 

After confirmed the temperature dependence of fluence on the sample, the magnetization  can 𝑀(𝑇)
be derived as a function of the temperature , which can be described by the Weiss molecular field 𝑇
theory (37):

                                     ,                                              (S12)  
𝑀(𝑇) = 𝑀𝑆 ∙ 𝑡𝑎𝑛ℎ[

𝑇𝐶

𝑇
𝑀(𝑇)

𝑀𝑆
]

where 𝜇0Ms = 0.98 T is the saturation magnetization of permalloy at room temperature (38) and Tc 
= 871 K is the Curie temperature of permalloy (33). 

Excitation via a transient optical grating results in a spatially periodic local laser fluence on the 
sample. The local temperature is directly coupled to the local fluence at short time delays. The local 
temperature at longer delays will be governed by thermal diffusion as reported in Fig. 5(a) of the 
main text and in Supplementary Note 4. The time dependent local magnetization  is correlated 𝑀(𝑇)
with the local temperature (Eq. S12). 
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Figure S5 | Schematic illustration of the precession of the magnetic moments. The black solid circle traces the 
precession of the local magnetic moment (M) around the effective magnetization direction (Heff). The dashed circle 
shows the projection of the precession onto the xy plane. Hext indicates the applied magnetic field,  is the angle of the 𝛼
applied field relative to the sample normal, the red dashed arrow is the projection of Hext in x-y plane, i. e. HIP .  is the 𝛾
angle between HIP and Y axis.

The ultrafast laser-induced demagnetization induces a change in the equilibrium direction of the 
magnetization ( ) immediately, shown in Fig. S5.  can be determined from: (33,38)𝐻𝑒𝑓𝑓 𝐻𝑒𝑓𝑓

 ,                               (S13){ 𝐻𝑒𝑥𝑡 ∙ sin (𝛼) = 𝐻𝑒𝑓𝑓 ∙ sin (𝜃𝑒𝑓𝑓)                  
𝐻𝑒𝑥𝑡 ∙ cos (𝛼) = [𝐻𝑒𝑓𝑓 + 𝑀(𝑡)] ∙ cos (𝜃𝑒𝑓𝑓) �

where the external field  = 0.25 T and the angle of the external field relative to the sample 𝜇0𝐻𝑒𝑥𝑡

normal . and is the equilibrium field and angle, respectively. Before laser excitation, 𝛼 = 3° 𝐻𝑒𝑓𝑓 𝜃𝑒𝑓𝑓 

 at 333K and the calibrated equilibrium angle . The laser-𝜇0𝑀 = 0.97𝑇 𝑇 = 𝑎𝑇 + 𝑇𝑟𝑖𝑠𝑒 = 𝜃 𝑅𝑇
𝑒𝑓𝑓 = 17°

induced ultrafast demagnetization change the equilibrium direction with a new angle . This 𝜃 𝑇
𝑒𝑓𝑓(𝑡)

makes the magnetization precession around this new equilibrium direction. The temporal 
precession angle  is therefore:𝜃𝑇(𝑡)

 .                                                     (S14)𝜃𝑇(𝑡) = 𝜃 𝑇
𝑒𝑓𝑓(𝑡) ‒ 𝜃 𝑅𝑇

𝑒𝑓𝑓

The precession angle is influenced by two mechanisms: 1) a change in the effective field direction; 
2) Due to the damping of permalloy, the precession angle drags the magnetization to the effective 
field direction. This allows us to formulate expressions of time dependent precession angle 

.                               (S15)𝜃(𝑡) = 𝜃𝑇(𝑡) ∙ 𝜃
𝛼𝑒𝑓𝑓(𝑡) = 𝜃𝑇(𝑡) ∙ 𝑒

‒ 2𝜋𝛼𝑒𝑓𝑓 ∙ 𝑡

The second term is related to the effective damping contribution. We use the effective damping 
parameter (αeff = 0.008) in the simulations (47). f is the precession frequency, which can be 
calculated based on the modified Kittel equation with exchange coupling field: (40)
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                      (S16)
𝑓 =

𝛾𝐺

2𝜋
𝜇0 (𝐻𝑒𝑓𝑓 + 𝐻𝑒𝑥)[𝐻𝑒𝑓𝑓 + 𝐻𝑒𝑥 + 𝑀 ∙ 𝑐𝑜𝑠2(𝜃𝑒𝑓𝑓)]

where  GHz/T (38) is the gyromagnetic ratio,  is the additional effective field due to the 

𝛾𝐺

2𝜋
= 28

𝐻𝑒𝑥

exchange coupling. 𝜇0 is the permeability of free space. The calculated frequency is presented in 
Fig. 5(b) in the main text.

The magnetization then precesses around the equilibrium center [ ] with radius 𝑥𝑐(𝑡),  𝑦(𝑡),  𝑧(𝑡)

 in Fig. S5, which have the relationships𝑟(𝑡)

 ,                                                    (S17)𝑟(𝑡) = 𝑀(𝑡) ∙ 𝑠𝑖𝑛[𝜃(𝑡)]

 ,                                    (S18)
{𝑥𝑐(𝑡) = 𝑀(𝑡) ∙ cos [𝜃 𝑇

𝑒𝑓𝑓(𝑡)] ∙ 𝑠𝑖𝑛(𝛾)
𝑦𝑐(𝑡) = 𝑀(𝑡) ∙ cos [𝜃 𝑇

𝑒𝑓𝑓(𝑡)] ∙ 𝑐𝑜𝑠(𝛾)
𝑧𝑐(𝑡) = 𝑀(𝑡) ∙ sin [𝜃 𝑇

𝑒𝑓𝑓(𝑡)]                  �
Then the x component of magnetization  is derived as𝑀𝑥(𝑡)

𝑀𝑥(𝑡)

= 𝑥𝑐(𝑡) + 𝑟(𝑡){ 𝑦𝑐(𝑡)

[𝑦𝑐(𝑡)]2 + [𝑦𝑐(𝑡)]2
𝑐𝑜𝑠[2𝜋𝑓(𝑡 ‒ 𝑡0)] +

𝑥𝑐(𝑡) ∙ 𝑧𝑐(𝑡)

[𝑥𝑐(𝑡) ∙ 𝑧𝑐(𝑡)]2 + [𝑦𝑐(𝑡) ∙ 𝑧𝑐(𝑡)]2 + ([𝑦𝑐(𝑡)]2 + [𝑦𝑐(𝑡)]2)2
𝑐𝑜𝑠[2𝜋𝑓(𝑡 ‒ 𝑡0)]}

 (S19)

Here we consider representative regions at constructive (maximum) and deconstructive (minimum) 
interference of the transient optical grating to calculate the time dependent maximum  and 𝑀𝑚𝑎𝑥

𝑥 (𝑡)

minimum  local magnetization. The time dependent Lorentz contrast is related to the 𝑀𝑚𝑖𝑛
𝑥 (𝑡)

absolute difference between  and ,𝑀𝑚𝑎𝑥
𝑥 (𝑡) 𝑀𝑚𝑖𝑛

𝑥 (𝑡)

       .                                                  (S20)∆𝑀𝑥(𝑡) = |𝑀𝑚𝑎𝑥
𝑥 (𝑡) ‒ 𝑀𝑚𝑖𝑛

𝑥 (𝑡)|

The detected Lorentz contrast is linearly dependent  (48):∆𝑀𝑥(𝑡)

                                                       (S21)𝑐𝐿𝑜𝑟𝑒𝑛𝑡𝑧(𝑡) = 𝑐𝐿𝑜𝑟𝑒𝑛𝑡𝑧 ∙ ∆𝑀𝑥(𝑡)

where cLorentz represents a proportionality constant for the Lorentz contrast. 

A deviation of the applied in-plane magnetic field component from the Y direction (rotation by 
angle 𝛾) results in an asymmetric modulation of  at different phases of the precession. Under 𝑀𝑥(𝑡)

conditions with a precession angle of θ =17⁰ and 0 < 𝛾 < θ the ratio between the first (phase 𝜋/2) 
and second peak (phase 3𝜋/2) in the temporal FFT intensity trace of the periodic magnetic Lorentz 
contrast is modulated as follows,
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                                    (S22)

 𝑀 +
𝑋,𝑚𝑎𝑥

𝑀 ‒
𝑋,𝑚𝑎𝑥

=
𝑠𝑖𝑛(𝜃 + 𝛾)
𝑠𝑖𝑛(𝜃 ‒ 𝛾)

Under conditions with θ ⩽ 𝛾 < 𝜋/2, the MX projection will no longer change sign during the 
precession and no reversal of Lorentz contrast is detected. This implies that peaks at precession 
phases 3𝜋/2 + n*2𝜋 (n = 0, 1, 2…) will be suppressed in the temporal FFT intensity trace of the 
magnetic Lorentz contrast and Mx,max+ may be calculated from the following expression:

                                          (S23)                   𝑀 +
𝑋,𝑚𝑎𝑥 = 𝑀 ∙ 𝑠𝑖𝑛(𝜃 + 𝛾)

Supplementary Note 6 | Lorentz image simulation using OOMMF & MALTS 

We use the Object Oriented MicroMagnetic computing Framework (OOMMF) (49) to construct 

the local spin configuration of four illustrative phases during the magnetic precession (0, 𝜋/2, 𝜋, 

and 3𝜋/2). Since the sample thickness is limited (50 nm) and permalloy exhibits in-plane 

magnetization anisotropy, the spin configuration of the sample may be treated in a 2D model. 

However, as the exciting transient optical grating is uniform along the X-axis of the sample, the 2D 

spin configuration can be simplified to a 1D spin configuration. The spin configuration is periodic 

along the X-axis direction of the sample, with the same periodicity as the exciting transient optical 

grating. The magnetic moment of each cell is defined by the local magnetization vectors MX and 

MY. MX and MY are extracted for each cell from the calculations presented in Supplement Note 5. 

The resulting magnetization matrix serves as input to the spin configuration file. After generating 

the spin configuration by OOMMF, we employ the Micromagnetic Analysis to Lorentz TEM 

Simulation (MALTS) (50) software to simulate the Fresnel mode LTEM (Lorentz Transmission 

Electron Microscopy) contrast images from the OOMMF spin configuration. The resulting 

simulations are shown in Fig. 4(d) and (h) of the main text. 


