Supporting Information

Here, we have summarized some of the equations from the several models discussed in the main text. This is supposed to help the reader to quickly look at the resulting equations while reading about a model in the main text, which can clarify the predictions of that model. We urge the reader to refer to the original articles for more detailed explanations or derivations of these equations.

The change in free energy, with three distinct terms for stretching, bending and adhesion energies can be expressed as

$$\Delta F = \frac{1}{2} \kappa_s \frac{(\Delta S)^2}{S_0} + \frac{1}{2} \kappa_b \int_{S_b} (c_1 + c_2 - c_0)^2 \, dS - \gamma \, \Delta S_{ad}$$

Where, and κ_s is the stretching modulus, ΔS and S_0 are the change or increase in membrane area due to stretching and the original area, respectively. κ_b is the bending modulus; c_1 and c_2 are the largest and smallest curvatures, i.e., the principal curvatures at a point in the membrane and c_0 is the spontaneous curvature, which is the natural tendency of the membrane to bend as a result of possible material asymmetries between its two faces. This can be taken to be zero assuming symmetrical membranes. S_b is the area of the membrane bent around the pillar surface. γ is the specific adhesion strength per unit area, ΔS_{ad} is the membrane area adhered to the nanopillars. This equation was used by Li and Xiao *et al.* in their models.¹⁻³

Pogodin *et al.* derived the following equation to calculate change in free energy and relate it to strain in the membrane ⁴

$$F = \int_{A} \frac{\zeta k \, dS}{1 + \alpha(r)} + \int_{A+B} \frac{k}{2} \alpha^2(r) \frac{dS}{1 + \alpha(r)} + \lambda k \left(\int_{A+B} \frac{dS}{1 + \alpha(r)} - S_0 \right)$$

Where $\alpha(r)$ is the stretching degree at a point, *k* is the stretching modulus, and ζ is the interaction parameter and λ is the Lagrange multiplier. Note that these terms do not have a different physical meaning, but simply are expressed differently mathematically because of how the author defined the physics behind the process.

Zahir et al. used the following equation ⁵

$$F = k \int \frac{k^2 \lambda^2 - (2\lambda + 1)k\varepsilon'(y) + \varepsilon'(y)^2}{[k(1+\lambda) - \varepsilon'(y)]^2} dS$$

subject to the constraint,

$$S_0 = \int \frac{k^2}{\left[k(1+\lambda) - \varepsilon'(y)\right]^2} dS$$

 ε' is the effective adhesion energy that includes contributions of both stretching and bending energy.

Xue *et al.* derived the following equations in their study to evaluate wall tension resulting from gravity.⁶

For nanoridges,

$$\alpha_{A} = \frac{\lambda R^{2}}{2\gamma E_{M} H} \left[\frac{D}{2r_{0}} \left\{ 1 + \left(\frac{2Hr_{0}}{R^{2}} \right)^{2} \right\}^{\frac{1}{2}} - \left\{ 1 + \left(\frac{2Hr}{R^{2}} \right)^{2} \right\}^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
$$\alpha_{B} = \frac{\lambda R^{2} (D - 2r_{0})}{4\gamma E_{M} Hr_{0}} \left(1 + \left(\frac{2Hr_{0} (2r - D)}{R^{2} (2r_{0} - D)} \right)^{2} \right)^{\frac{1}{2}}$$

Where, α_A and α_B are the stretching degrees for the regions adhered to the pillars and suspended between them, respectively. r_0 can be found using the constraint,

$$S_{0} = \int_{0}^{r_{0}} \left[\frac{1 + \left(H \left(1 - \frac{2r}{R^{2}} \right) \right)^{2}}{1 + \alpha_{A}} \right]^{\frac{1}{2}} dr + \int_{r_{0}}^{D/2} \left[\frac{1 + \left(\frac{2Hr_{0}}{R^{2}} \left(\frac{r - \frac{D}{2}}{\frac{D}{2} - r_{0}} \right) \right)^{2}}{1 + \alpha_{B}} \right]^{\frac{1}{2}} dr$$

For nanopillars,

$$\alpha_{A} = \frac{\lambda R^{2}}{4\gamma E_{M} H} \left(\frac{D^{2}}{\pi r_{0}^{2}} - 1 \right) \left(1 + \left(\frac{2Hr_{0}}{R^{2}} \right)^{2} \right)^{\frac{1}{2}} + \frac{2Hr^{2}}{3R^{2}\gamma E_{M}} \left(\frac{r_{0}^{3}}{r^{3}} - 1 \right)^{\frac{1}{2}}$$
$$\alpha_{B} = \frac{\lambda R^{2}}{4\gamma E_{M} H} \left(\frac{D^{2}}{\pi r_{0}^{2}} - 1 \right) \left(1 + \left(\frac{2Hr_{0}}{R^{2}} \right)^{2} \right)^{\frac{1}{2}}$$

Subject to the constraint,

$$S_0 = \int_A \frac{8\pi H r^2 / 3R^2}{1 + \alpha_A} dr + \frac{2(1 - \cos\theta_0) (D^2 - \pi r_0^2)}{\sin^2\theta_0 (1 + \alpha_B)}$$

Watson et al. defined two possible scenarios 7

If the change in surface energy is comparable to the cost of bending and stretching, i.e. in the slowbinding scenario,

$$T.S = \frac{\pi\gamma}{nT} - \frac{\pi E_M T^2}{24 nR^2}$$

Where, *T.S* is the tensile strength of the cell wall, *T* is its thickness, *R* is the radius of the pillar, E_M is the Young's modulus, γ is the surface energy, and *n* is the number of neighboring pillars. If the change in surface energy is far greater than the cost of bending and stretching, i.e. in the fastbinding scenario,

$$T.S = E_M \left[\frac{1.1R + 2h_{max}}{D + 2R} \right]$$

Where h_{max} can be found by solving the quadratic equation,

$$\left[\frac{2E_M nRT}{D+2R}\right]h_{max}^2 + \left[\frac{2.2E_M nTR^2}{D+2R} + \frac{\pi E_M T^3}{12R} - 2\pi\gamma R\right]h_{max} + \left[\frac{0.6BnTR^3}{D+2R} + \frac{\pi E_M T^3}{12} - 2\pi\gamma R^2\right] = 0$$

Where, D is the pillar interspacing.

Valiei *et al.* derived the following equation by assuming ideal cylindrical cell geometry (as shown in fig 5B) and solving the integral given in the main text.⁸ The force acts along the pillar height.

 $F_c = 2\gamma(\pi R \sin \alpha + L) \sin (\alpha + \theta) ; 0 \le \alpha \le \pi$

where L is the length of the cylindrical part of the bacterium, R is the radius of the hemispherical edge of the bacterium, θ is the contact angle of the liquid with the bacterial surface, and α is the falling angle describing the position of three-phase contact line on the hemispherical end of a bacterium.

Author; Year	or; Year Parameter		Value	Ref	
		Stretching modulus	1 mN/m or 0.25 $k_B T$ /nm ²		
		Bending modulus	$10 k_B T$	-	
Li; 2016		Specific adhesion strength	$10 \text{ mJ/nm}^2 \text{ or } 0.2 \ k_B T$ /nm ²	2	
	E. coli	Radius of cell	200 nm		
		Length of cell	2 μm	-	
		Cell density	10 ³ kg/m ³		
Xue; 2015		Diameter	0.2-7 um		
		Gravitational force experienced	2-70 mN/m ²	6	
		Bond energy of peptide bond	362.3 kJ/mol		

Table S1: Values of different parameters used if	l in various :	studies o	discussed in 1	the text.
--	----------------	-----------	----------------	-----------

		Critical stretching degree		
		(required to rupture the	0.11	
		wall)		
		Mechanical strength of one		
		peptidoglycan monomer,	1.145 N/m ²	
		per unit area		
		Elastic modulus	10.528 Pa	
	Gram-positive	Cell wall thickness	≈ 30.9 nm	
	Gram-negative	Cell wall thickness	≈ 3.6 nm	-
	S. aurous	Size	$0.74\pm0.11~\mu m$	
	5. uureus	Thickness	15 – 30 nm	-
		Area compressibility	$1.25 k_{\rm P}T$ /mm ²	2
X1ao; 2020		modulus	$1.25 \text{ m}^{B^{2}}/\text{nm}^{2}$	5
		Bending elastic modulus	$100 k_B T$	-
		Specific adhesion strength	$0.25 \ k_B T \ /\mathrm{nm}^2$	
		Stretching modulus	1 mN/m or 0.25 $k_B T$	
			/nm ²	
Li: 2016		Bending modulus	$10 k_B T$	1
11, 2010		Sussifies adhesian strength	5 mJ/nm ² or 0.1 $k_B T$	-
		Specific adhesion strength	/nm ²	
	S. aureus	Radius of the cell	1 μm	-
	Hertz model	Poisson's ratio	0.5	
Liu; 2019		Exponent for time (m)	1	-
	Creep deformation	A	6.8 * 10 ⁻¹⁰	9
		n	1.98	-
		Elastic strength of cell wall	1 MPa	_
Mirzaali,		Electic modulus	6 lrDo	10
2018	S. aureus (Cell wall)		UKFa	
		Poisson's ratio	0.278	

	S. aureus (Cytoplasm)			
	Neo-Hookean hyper	C ₀	6.21 * 10 ⁵ MPa	
	elastic properties	D	1666.7 MPa ⁻¹	
	Viscoelastic	Prony coefficient (g_1)	0.39	
	properties	<i>k</i> ₁	0	
	(Prony series)	τ	187.5 s	
	S. aureus	Mass	1 pg.	
Velic', 2019	R subtilis	Elastic modulus	115 MPa	11
	- D. Subillis	Poisson's ratio	0.118	
		Interaction forces	100 pN/pillar	

 k_B is the Boltzmann constant, T is the temperature.

For typical phospholipid bilayers, $\kappa \approx 20 \text{ k}_{B}T$, where $k_{B}T \approx 4.1 \times 10^{-21} \text{J} \approx 0.6 \text{ kcal mol}^{-1}$ is the thermal energy.

Table S2: Current reports	on modelling of bactericidal	actions of nanopatterned surfaces
---------------------------	------------------------------	-----------------------------------

Year	Brief description	Driving force	Ref.
	Adsorption of the cell wall to the nanopillar surface is		
	spontaneous causes the wall to stretch in the region suspended	A decrease in	
2013	between nanopillars, which finally leads to rupture when the	overall free	4
	stretching degree exceeds the elastic strength of the	energy	
	membrane.		
	Gravity induced tension in the cell wall causes stretching and	Cravitational	
2015	finally causes mechanical failure and rupture at the tip of the	Gravitational	6
	adsorbed region.	pull	
2016	Stretching of the cell wall of bacteria resting on a nanopillar	A decrease in	1
2016	surface occurs until equilibrium is reached, which is decided	overall free	

	by a balance between adhesion free energy and the stretching	energy	
	as well as bending free energies.		
	Stretching of the cell wall of bacteria resting on a nanopillar	A decrease in	
2016	surface occurs until equilibrium is reached, which is decided	overall free	2
2010	by a balance between adhesion free energy and the stretching	energy	
	as well as bending free energies.	energy	
	Stresses generated at the pillar tip due to the body force acting	Pressure due to	
2018	on a bacterial cell as a result of gravitational pull and the	water column	10
2010	weight of the water column above it are responsible for	above cell	
	excessive stretching at rupture at the tip.		
	Decreasing interfacial energy gradient along the pillar surface	Interfacial	
2019	creates a pressure on the cell and pulls it down along the pillar	anargy gradient	9
	surface.	energy gradient	
	The decrease in surface energy due to the attraction of the cell	A decrease in	
2019	wall to the nanopillar surface provides the work needed to	overall surface	7
2017	stretch the	energy	
	bacterial cell wall between the nanopillars.	energy	
	Cohesive interactions between bacteria and pillars pull the	Bacteria-pillar	
2019	cell downwards and generate strains at the pillar tip,	cohesive	11
	ultimately causing it to rupture.	interactions	
	Spontaneous adsorption of the cell wall to nanopillar surfaces	A decrease in	
2020	compensates for the energy required for bending and	overall free	5
2020	stretching and causes stretching of the cell wall in the region	energy	
	suspended between pillars.	energy	
	Stretching of cell wall resting on a nanopillared surface	A decrease in	
2020	occurs until equilibrium is reached, which is decided by a	Gibbs free	3
	balance between adhesion free energy and stretching and	energy	
	bending free energies.		
2020	The force resulting from the gravitational pull on the cell	Gravitational	12
	causes pillars to penetrate and rupture it.	pull	

Table S3: Several interesting experimental findings refute current understanding or present other relevant scenarios where current models do not apply.

Year	Brief description	Techniques used	Ref.
2017	Initially, the cell gets in contact with and firmly adheres to a few relatively taller pillars through EPS secretion. Then, as it tries to move away from the jagged topography, the shear forces created cause the inner and outer membrane to separate, eventually leading to rupture and leaking of intracellular fluid.	HIM, FIB-SEM, TEM tomography	13
2018	Cells resting on very high aspect ratio CNTs cause them to buckle, bend, and store elastic strain energy, which can provide activation energy for rupturing the wall when high enough.	FIB-SEM	14
2020	Cells on nanopillars seldom get penetrated and ruptured by the HARNs. Deformation and stretching induced by the nanostructures cause a high-stress environment and activate intracellular machinery in response, leading to excessive ROS generation. This ultimately leads to death.	SEM, TEM, 3D reconstructions of TEM images, Protein screening	15
2020	Cells on nanopillars are generally viable and only get killed when an air-liquid interface passes through them and exerts high downward forces due to capillary forces in the process.	Fluorescence microscopy, SEM	8
2020	When cells are tall enough, bacteria resting on top of them pull and bend them and store elastic strain energy in the process. This can provide enough activation energy to cause rupture later.	FIB-SEM	16

Table S4: List of symbols frequently used in equations in this article

Symbol	Description	Unit

ĸa	Stretching or compressibility modulus	$N/m \text{ or } k_B T/nm^2$
κ _b	Bending modulus	k _B T
γ	Specific adhesion strength per unit area	k_BT/nm^2
ΔF	Change in free energy	k _B T
F	Free energy	k _B T
S ₀	Original surface area	m^2
ΔS	Change in surface area	m^2
S	Final surface area	<i>m</i> ²
R	Radius of pillars	nm
Н	Height of pillars	nm
D	Interspacing of pillars	nm
h	Drop height	nm
	Young's modulus	Pa

References

- 1. X. Li, *Phys Chem Chem Phys*, 2016, **18**, 1311-1316.
- 2. X. Li and T. Chen, *Phys Rev E*, 2016, **93**, 052419.
- K. Xiao, X. Cao, X. Chen, H. Hu and C. Wu, *Journal of Applied Physics*, 2020, 128, 064701.
- S. Pogodin, J. Hasan, V. A. Baulin, H. K. Webb, V. K. Truong, T. H. Phong Nguyen, V. Boshkovikj, C. J. Fluke, G. S. Watson, J. A. Watson, R. J. Crawford and E. P. Ivanova, *Biophys J*, 2013, **104**, 835-840.
- T. Zahir, J. Pesek, S. Franke, J. V. Pee, A. Rathore, B. Smeets, H. Ramon, X. Xu, M. Fauvart and J. Michiels, *Microorganisms*, 2020, 8, 186.
- 6. F. Xue, J. Liu, L. Guo, L. Zhang and Q. Li, *J Theor Biol*, 2015, 385, 1-7.
- G. S. Watson, D. W. Green, J. A. Watson, Z. Zhou, X. Li, G. S. Cheung and M. Gellender, *Advanced Materials Interfaces*, 2019, 6, 1801646.
- A. Valiei, N. Lin, J. F. Bryche, G. McKay, M. Canva, P. G. Charette, D. Nguyen, C. Moraes and N. Tufenkji, *Nano Lett*, 2020, DOI: 10.1021/acs.nanolett.0c01343.
- T. Liu, Q. Cui, Q. Wu, X. Li, K. Song, D. Ge and S. Guan, *J Phys Chem B*, 2019, 123, 8686-8696.
- M. J. Mirzaali, I. C. P. van Dongen, N. Tumer, H. Weinans, S. A. Yavari and A. A. Zadpoor, *Nanotechnology*, 2018, 29, 43LT02.

- A. Velic, T. Tesfamichael, Z. Li and P. K. Yarlagadda, *Procedia Manufacturing*, 2019, 30, 514-521.
- L. Liu, S. Chen, X. Zhang, Z. Xue, S. Cui, X. Hua, B. Yang, H. Yan, C. Liu and J. Wang, Science Advances, 2020, 6, eabb9593.
- C. D. Bandara, S. Singh, I. O. Afara, A. Wolff, T. Tesfamichael, K. Ostrikov and A. Oloyede, *ACS Appl Mater Interfaces*, 2017, 9, 6746-6760.
- D. P. Linklater, M. De Volder, V. A. Baulin, M. Werner, S. Jessl, M. Golozar, L. Maggini, S. Rubanov, E. Hanssen, S. Juodkazis and E. P. Ivanova, *ACS Nano*, 2018, 12, 6657-6667.
- 15. J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A. H. Nobbs and B. Su, *Nat Commun*, 2020, **11**, 1626.
- E. P. Ivanova, D. P. Linklater, M. Werner, V. A. Baulin, X. Xu, N. Vrancken, S. Rubanov, E. Hanssen, J. Wandiyanto, V. K. Truong, A. Elbourne, S. Maclaughlin, S. Juodkazis and R. J. Crawford, *Proc Natl Acad Sci U S A*, 2020, **117**, 12598-12605.