Supplementary Information

Facile synthesis of 3D Ni@C nanocomposites derived from two kinds

of petal-like Ni-based MOFs towards lightweight and efficient

microwave absorbers

Pengshu Yi^{ab}, Zhengjun Yao^{ab*}, Jintang Zhou^{ab*}, Bo Wei^{ab}, Lei Lei^{ab}, Ruiyang Tan^{ab}, Huiyuan Fan^{ab}

^aCollege of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

^bKey Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China

Correspondence to: Zhengjun Yao (E-mail: yaozj1921@126.com)

Jintang Zhou (E-mail: imzjt@126.com)

Fig. S1 (a) XRD patterns of Ni-MIM and Ni-NBC. (b) Raman spectra of NMC and NBC.

Fig. S2 FT-IR spectra of (a) NMC@GN and (b) NBC@GN.

Fig. S3 N_2 adsorption-desorption isotherms and pore size distributions of (a, c) NMC@GN and (b, d) NBC@GN.

Fig. S4 SEM images of GNs.

Fig. S5 SEM images of NMC@GN and NBC@GN prepared at different pyrolysis temperatures: (a) NMC@GN-300°C, (b) NMC@GN-450°C, (c) NMC@GN-600°C, (d) NBC@GN-450°C, (e) NBC@GN-600°C, (f) NBC@GN-750°C.

Fig. S6 N 1s spectrum of NMC@GN.

Fig. S7 Schematic diagram of actual magnetic properties of (a-c) NMC@GN and (d-f) NBC@GN.

Fig. S8 The Cole-Cole plots of (a) NMC@GN-10%, (b) NMC@GN-15%, (c) NBC@GN-10%, (d) NBC@GN-15%.

Fig. S9 Complex permittivity (a), complex permeability (b), loss tangent (c), attenuation constant (d), 3D representations of R_L (e), 2D projection (f) of GNs.

Fig. S10 Complex permittivity (a), complex permeability (b), loss tangent (c), attenuation constant (d), 3D representations of R_L (e), 2D projection (f) of pure NMC.

Fig. S11 Complex permittivity (a), complex permeability (b), loss tangent (c), attenuation constant (d), 3D representations of R_L (e), 2D projection (f) of pure NBC.

Fig. S12 Normalized input impedance of (a) NMC@GN-15% and (b) NBC@GN-10%.

	e _s	\mathcal{E}_{∞}	$ au_{(S)}$	$\sigma_{(S/m)}$	MSE
NMC@GN-10%	112.84	3.13	9.04×10 ⁻¹¹	0.54	0.01134
NMC@GN-15%	230.21	1.64	2.36×10 ⁻¹⁰	0.69	0.03622
NBC@GN-10%	35.15	7.76	3.66×10 ⁻¹¹	0.12	0.00796
NBC@GN-15%	58.43	1.56	1.13×10 ⁻¹⁰	0.51	0.01953

 Table. S1 Detailed fitting results of all the samples

Sample	Ratio	RL _{min}	Thickness	EAB	Ref.
	(%)	(dB)	(mm)	(GHz)	
Ni@C	25%	-59.5	4.5	4.7	73
CeO _{2-x} /RGO	50%	-50.6	1.5	5.84	72
Ni/C	30%	-52.4	1.6	5	14
Ni@C@ZnO	25%	-55.8	2.5	4.1	71
Co@NC	25%	-53.0	1.8	6.2	74
Ni@C-ZIF	40%	-86.8	2.7	2.14	16
H-Co/C	10%	-50.7	2.9	4.6	20

Co-	150/	18.0		2.00	22
C/MWCNTs	15%	-40.9	-	2.99	22
Co@NC@RGO	50%	-46.5	3.5	4.72	49
NC@Co/NC	25%	-52.5	2.2	4.4	10
NMC@GN	10%	-53.99	1.4	4.39	this work
NBC@GN	15%	-49.58	1.4	4.03	this work

 Table. S2 Comparison of microwave absorption properties of MOFs derived

 materials in recent references and this work.