Supporting Information

On-demand mixing and dispersion in mini-pillar based microdroplets

Chuan Fan, ^{#, a} Yong Luo, ^{#, a} Tailin Xu,^{*, a, b} Yongchao Song,^a Xueji Zhang^{*, a, b}

[#]contributed equally to this work.

Experimental

Materials and instruments

The piezoelectric transducer was purchased from Harbin Core Tomorrow Science and Technology Co. Ltd, China, with the diameter of 6.40 mm and a thickness of 2.00 mm. The polydimethylsiloxane (PDMS) was purchased from Dow Europe GmbH. The photomask with array was custom made from Beijing Zhongjingkeyi Technology Co., Ltd, China. The 3 μ m polystyrene nanoparticles (PS) were purchased from Beijing Zhongkeleiming Technology Co. Ltd, China. And the 1 μ m Fe₃O₄ nanoparticles were purchased from Nanjing Nanoeast Biotech Co. Ltd, China. All chemicals were used without any further purification and prepared by dilution using ultrapure water (Milli-Q, 18.2 MΩ). A Nikon Eclipse Ni microscope, coupled with a 4× objective and a Nikon DS-Ri2 microscope camera are used for recording videos of polystyrene nanoparticles. The motion of Fe₃O₄ nanoparticles in the microdroplet was captured by using a macrolens on a mobile phone, and the corresponding microscope images are obtained by a Nikon ECLIPSE LV100ND.

Fabrication of mini-pillar-based platform

The solid substrate was a single-sided printed circuit board customized from manufacturer. The PDMS mini-pillar with a diameter about 2.0 mm was prepared by casting in a mold. First, the PDMS prepolymer was mixed with curing agent with the ratio of 10:1, and eliminated bubbles by the vacuum drying oven with about 20 min. The prepolymer afterwards was poured onto the template and transfer to drying oven at 80 °C about 4 h for solidification. Then the piezoelectric transducer and the PDMS mini-pillar were concatenated through the uncured PDMS and curing agent in the drying oven at 60°C about 4 h. The drop of liquid was added to the obtained PDMS mini-pillar array for producing microdroplets array. The continuous sine wave was generated by using the arbitrary waveform generator, which connected to the homemade power amplifier varied from 0 to 10.0 V, and finally transferred to the piezoelectric transducer to produce ultrasonic waves. Each PDMS mini-pillar was connected to a separate controllable piezoelectric transducer for achieving on-demand mixing and disperse droplets onto the mini-pillar array.

Supporting Videos

SI Video 1. The polystyrene nanoparticles with controllable rotating play with double speed.

SI Video 2. The Fe₃O₄ nanoparticles continuous movement play with double speed.