**Supplementary Material:** 

## Ni<sub>2</sub>P Nanoflakes for High-Performing Urea Oxidation Reaction: Linking Active

## Sites to UOR Mechanism

Haipeng Liu, Shengli Zhu,\* Zhenduo Cui, Zhaoyang Li, Shuilin Wu, and Yanqin Liang\* School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

<sup>\*</sup>Corresponding author: <u>slzhu@tju.edu.cn</u> (S. L. Zhu)

<sup>\*</sup>Corresponding author: <u>yqliang@tju.edu.cn</u>(Y. Q. Liang)



**Fig. S1** Characterizations for  $\beta$ -Ni(OH)<sub>2</sub> nanoflakes, (a) XRD pattern, (b) SEM image, (c) TEM image (inset is the corresponding HRTEM image), and (d) SAED pattern.



Fig. S2 O 1s XPS spectrum for  $\beta$ -Ni(OH)<sub>2</sub> nanoflakes.



**Fig. S3** Cyclic voltammetry curves in (a) 1 M KOH solution and (b) 1 M KOH with 0.5 M urea solution at a scan rate of 5 mV·s<sup>-1</sup>. (c) Digital picture for OER triggered by 20 wt.% Ir/C at *ca.* 1.7 V vs. RHE. (d) Digital picture for UOR triggered by 20 wt.% Ir/C at *ca.* 1.7 V vs. RHE.



Fig. S4 Tafel slopes measured by chronopotentiometry method.



Fig. S5 (a) XRD patterns for as-synthesized non-Ni-based hydroxide catalysts. (b) UOR performance for non-Ni-based hydroxide catalysts,  $\beta$ -Ni(OH)<sub>2</sub> and Ni<sub>2</sub>P nanoflakes.



**Fig. S6** Enlarged view of OER CV curves for  $\beta$ -Ni(OH)<sub>2</sub> and Ni<sub>2</sub>P nanoflakes from Fig. 3a.



**Fig. S7** Enlarged view of UOR CV curves for  $\beta$ -Ni(OH)<sub>2</sub> and Ni<sub>2</sub>P nanoflakes from Fig. 3a.



**Fig. S8** CV curves for (a)  $\beta$ -Ni(OH)<sub>2</sub> nanoflakes and (b) Ni<sub>2</sub>P nanoflakes in 1 M KOH at potential sweep rates of 30, 50, 70, 90, and 110 mV·s<sup>-1</sup>.



**Fig. S9** Cyclic voltammetry curves for (a)  $\beta$ -Ni(OH)<sub>2</sub> nanoflakes and (b) Ni<sub>2</sub>P nanoflakes measured in 1 M KOH solution, (c)  $\beta$ -Ni(OH)<sub>2</sub> nanoflakes and (d) Ni<sub>2</sub>P nanoflakes measured in 1 M KOH solution with 0.5 M urea at scan rates from 10 to 60 mV·s<sup>-1</sup>.

To measure double-layer charging and discharging via CV, a potential range in which no apparent Faradaic processes occurred was determined from static CV. This range is typically a 0.05 V potential window centered at the open-circuit potential (OCP) of the system. All measured current in this non-Faradaic potential region is assumed to be due to double-layer charging and discharging<sup>1, 2</sup>.



Fig. S10 Characterizations for  $Ni_2P$  nanoflakes after 250 CV cycles in 1 M KOH solution at 5 mV·s<sup>-1</sup>, (a) XRD pattern, XPS spectra for (b) Ni 2p orbital, (c) P 2p orbital, and (d) O 1s orbital.



Fig. S11 (a) Cyclic voltammetry curves for Ni<sub>2</sub>P nanoflakes measured in 1 M KOH solution. (b) Double layer capacitance derived from cyclic voltammetry curves in Fig.



Fig. S12 5<sup>th</sup> and 250<sup>th</sup> cycle for cyclic voltammetry curves for Ni<sub>2</sub>P nanoflakes measured in 1 M KOH solution at 5 mV  $\cdot$  s<sup>-1</sup>.



Fig. S13 Equivalent circuits used for fitting EIS spectra during (a) OER process, and (b) UOR process.



**Fig. S14 (a)** TEM image, **(b)** HRTEM image, **(c-e)** EDS elemental mappings for  $Ni_2P$  nanoflakes at 10 mA·cm<sup>-2</sup> for 1 h in 1 M KOH with 0.5 M urea solution.



**Fig. S15** XPS spectra for Ni<sub>2</sub>P nanoflakes at 10 mA  $\cdot$  cm<sup>-2</sup> for 1 h in 1 M KOH with 0.5 M urea solution, (a) Ni 2p orbital, (b) P 2p orbital, and (c) O 1s orbital.

| Elements                         | $\beta$ -Ni(OH) <sub>2</sub> | Ni <sub>2</sub> P OER  | $\beta$ -Ni(OH) <sub>2</sub> | Ni <sub>2</sub> P UOR  |
|----------------------------------|------------------------------|------------------------|------------------------------|------------------------|
|                                  | OER                          |                        | UOR                          |                        |
| $R_{s}\left( \Omega ight)$       | 6.76                         | 4.964                  | 5.555                        | 3.903                  |
| $Q_1(\mathbf{F})$                | 5.721×10 <sup>-2</sup>       | 7.399×10 <sup>-4</sup> | 3.316×10 <sup>-2</sup>       | 4.89×10 <sup>-2</sup>  |
| <i>Q</i> <sub>1</sub> - <i>n</i> | 3.861×10 <sup>-1</sup>       | 6.89×10 <sup>-1</sup>  | 5.988×10 <sup>-1</sup>       | 2.721×10 <sup>-1</sup> |
| $R_{I}\left(\Omega ight)$        | 2.89                         | 3.528×10 <sup>-1</sup> | 8.766                        | 6.767×10 <sup>-1</sup> |
| $Q_2(\mathbf{F})$                | 1.693×10-2                   | 1.103×10-3             | 8.358×10 <sup>-4</sup>       | 4.611×10-3             |
| <i>Q</i> <sub>2</sub> - <i>n</i> | 8.863×10 <sup>-1</sup>       | 8.486×10 <sup>-1</sup> | 8.775×10 <sup>-1</sup>       | 7.167×10 <sup>-1</sup> |
| $R_{2}\left( \Omega ight)$       | 11.17                        | 6.521                  | 10.42                        | 8.934                  |
| $Q_{3}\left(\mathrm{F} ight)$    | -                            | -                      | 5.355×10 <sup>-2</sup>       | 5.07×10 <sup>-1</sup>  |
| $Q_3$ -n                         | -                            | -                      | 3.518×10 <sup>-1</sup>       | 9.494×10 <sup>-1</sup> |
| $R_{3}\left( \Omega ight)$       | -                            | -                      | 1.215                        | 1.005                  |

 Table S1 Fitting results for EIS spectra.

## Reference

- 1. L. S. Bezerra and G. Maia, J. Mater. Chem. A, 2020, 8, 17691-17705.
- C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 16977-16987.