Supplementary information

Nonvolatile resistive switching and synaptic characteristics in leadfree all inorganic perovskite based flexible memristive device for neuromorphic systems

Abubakkar Siddik^a, Prabir Kumar Haldar^a, Tufan Paul^b, Ujjal Das^c, Arabinda Barman^d, Asim Roy^c and Pranab Kumar Sarkar^{e*}

^aDepartment of Physics, Cooch Behar Panchanan Barma University, West Bengal 736101, India

^bSchool of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India

^cMicro and Nano Research Lab, Department of Physics, National Institute of Technology, Silchar, Assam, 788010, India

^dDepartment of Physics, Dinhata College, Dinhata, West Bengal 736 135, India

eDepartment of Applied Science and Humanities, Assam University, Silchar 788011, India

Corresponding author E-mail: pranab.sarkar83@gmail.com

Fig. S1: Statistical distribution of (a) the switching voltage (b) LRS and HRS for various devices

Fig. S2: I-V curve of the Ag/CsSnCl₃/ITO device on 1st day and after 2 weeks.

Structure	Lead free	Forming voltage	Set Voltage (V)	Reset voltag e (V)	ON/OFF ratio	Retention (s)	Endur ance cycles	Bendi ng cycle	Refer ences
Al/CsPbBr ₃ /PEDOT:PS S/ITO/PET	No	3	-0.6	1.7	~10 ²		50	100	1
Ni/ZnO/CsPbBr ₃ /FTO	No	No	-1.0	0.7	~105	>10000	100		2
Au/CH ₃ NH ₃ PbI ₃ /ITO/P ET	No	No	0.7	-0.5	~10	10000	400	100	3
Ag/FAPbI ₃ /Pt	No		0.22	-0.22	~10 ⁵	1000	1200		4
Au/CH ₃ NH ₃ PbI _{3-x} Cl _x / FTO	No	No	1	-1	<10	>10000	>100	No	5
Ag/PVOH- ZnSnO ₃ /Ag/PET	Yes	No	1.5	-1.5	~100	129600	500	1500	6
Au/PMMA/CsSnI ₃ /ITO	Yes	0.05	2	-3	>10	10000	>150		7
Ag/PMMA/Cs ₃ Cu ₂ I ₅ /IT O	Yes	0.48	0.6	-0.44	>10 ²	10000	100		8
Pt/CsSnBr ₃ /Pt/PI	yes		0.20	-0.15	>105	10000	50	200	9
Ag/CsSnCl ₃ /ITO	Yes	No	0.95	-1.07	>10 ²	10000	105	200	This work

 Table S1: Tabulated electrical parameters of memristors

Fig. S3: PPF Characteristics with pulse amplitude 3V and pulse width 10 µs

Fig. S4: Synaptic potentiation/depression of a typical memristor at the radius of 12mm.

References

- 1 D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, and Wei Hu, ACS Appl. Mater. Interfaces, 2017, 9, 7.
- 2 Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, H. Zeng, *Nano Research*, 2017, **10**, 1584–1594.
- 3 C. Gu and J. S. Lee, ACS Nano, 2016, 10, 5413-5418.
- 4 J.-M. Yang, S.-G. Kim, J.-Y. Seo, C. Cuhadar, D.-Y. Son, D. Lee and N.-G. Park, *Adv. Electron. Mater.*, 2018, 4, 1800190.
- 5 E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi and L. Wang, *Adv Mater*, 2015, 27, 6170-6175.
- 6 G.U. Siddiqui, M.M. Rehman and K.H. Choi, *Polymer*, 2016, **100**, 102-110.
- 7 J. S. Han, Q. V. Le, J. Choi, H. Kim, S. G. Kim, K. Hong, C. W. Moon, T. L. Kim, S. Y. Kim and H. W. Jang, *ACS Applied Materials and Interfaces*, 2019, **11**, 8155-8163.
- 8 F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, and X. Tang, *ACS Appl. Mater. Interfaces* 2020, **12**, 23094–23101.
- 9 H. Wang, J. Lin, Y. Zhu, X. Zeng, H. Wei, P. Cheng, H. Lu, Y. Liu, and R. Xiong, *Adv. Electron. Mater.*, 2020, **6**, 2000799