Supporting Information

Computational screening of pristine and functionalized ordered TiVC

MXenes as highly efficient anode materials for lithium-ion batteries

Yameng Li,^a Lei Li,^a Rao Huang,^a Yang Zhang,^b Yuhua Wen^{*,a}

^a Department of Physics, Xiamen University, Xiamen 361005, China E-mail: <u>yhwen@xmu.edu.cn</u> ^b Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China

Figure S1. Side views for the most stable configurations of (a) Ti_2C , (b) Ti_2CO_2 , (c) Ti_2CS_2 , (d) Ti_2CF_2 , (e) $Ti_2C(OH)_2$, and (f) V_2C , (g) V_2CO_2 , (h) V_2CS_2 , (i) V_2CF_2 and (j) $V_2C(OH)_2$ monolayers after relaxation, respectively (Referring to Figure 1 for interpretation of atomic color).

Figure S2. The calculated phonon dispersion curves of TiVC monolayer.

Figure S3. The pristine and functionalized TiVC MXenes after *ab initio* molecular dynamics simulations of 20 ps.

Figure S4. The density of states (DOS) for (a) TiVC, (b) TiVCO₂, (c) TiVCS₂, (d) TiVCF₂, and (e) TiVC(OH)₂ monolayers. Note that the Fermi levels are set to zero.

Figure S5. The diffusion pathway of Li ion on (a) Ti and (b) V surfaces of pristine TiVC monolayer, (c) Ti and (d) V surfaces of TiVCF₂ monolayer, (e) Ti and (f) V surfaces of TiVCO₂ monolayer, and (g) Ti and (h) V surfaces of TiVCS₂ monolayer (Referring to Figure 1 for interpretation of atomic color).

Figure S6. The average adsorption energy of multi-Li ions on favorable adsorption sites of TiVC, TiVCO₂ and TiVCS₂ monolayers.

Materials		O-group	S-group	F-group	OH-group
т: ст	charges	-1.097	-0.716	-0.747	-0.753
$\Pi_2 \subset \Gamma_2$	<i>r</i> _{(Ti} − _{C)} , <i>r</i> _{(Ti} − _{T)}	2.188, 1.974	2.148, 2.381	2.097, 2.155	2.104, 2.163
TiVCT ₂	charges	-1.077	-0.697	-0.733	-0.744
(Ti-surface)	r _{(Ti}	2.189, 1.932	2.114, 2.370	2.065, 2.134	2.072, 2.139
TiVCT ₂	charges	-0.990	-0.611	-0.715	-0.721
(V-surface)	$r_{(V-C)}, r_{(V-T)}$	2.152, 1.891	2.063, 2.325	2.013, 2.138	2.023, 2.130
V ₂ CT ₂	charges	-0.984	-0.579	-0.674	-0.721
	$r_{(V-C)}, r_{(V-T)}$	2.057, 1.960	2.020, 2.336	2.073, 2.123	1.987, 2.111

Table S1 The structure characteristics and the amount of obtained charges, for T-groups on Ti_2CT_2 , $TiVCT_2$ and V_2CT_2 (T = O, S, F, or OH) monolayers.

Table S2 The adsorption energy of single Li ion on different sites of TiVC and TiVCT₂ (T = O, S, F, or OH) monolayers, and the bracket indicates the Li ion adsorption site after relaxation. The loss of charge amount after Li ion adsorption on surface of TiVC and TiVCT₂ (T = O, S, F, or OH) monolayers.

	Adsorption energy (eV)			Transfer charge (e ⁻)		
Adsorption Site	C-site	H-site	T-site	C-site	H-site	T-site
Ti ₂ C	-0.706	-0.721	-0.700(C-H)	0.835	0.835	0.835
TiVC (Ti-Surface)	-0.749	-0.735	-0.749(C)	0.837	0.838	0.837
TiVC (V-Surface)	-0.839	-0.845	-0.845(H)	0.836	0.835	0.836
V ₂ C	-0.911	-0.891	-0.911(C)	0.837	0.839	0.838
Ti ₂ CO ₂	-1.974	-1.974(C)	-1.658	0.882	0.883	0.904
TiVCO ₂ (Ti-Surface)	-2.450	-2.340(T)	-2.340	0.885	0.898	0.896
TiVCO ₂ (V-Surface)	-2.643	-1.826	-2.446	0.885	0.915	0.897
V ₂ CO ₂	-2.856	-2.974(C)	-2.685	0.887	0.886	0.898
Ti ₂ CS ₂	-1.704	-1.786(T)	-1.786	0.882	0.874	0.875
TiVCS ₂ (Ti-Surface)	-1.763	-1.865(T)	-1.865	0.881	0.872	0.872
TiVCS ₂ (V-Surface)	-1.218	-1.340(T)	-1.340	0.887	0.874	0.874
V ₂ CS ₂	-0.960	-0.960(C)	-1.085	0.888	0.888	0.873
Ti ₂ CF ₂	-0.778	-0.778(C)	-0.625	0.896	0.896	0.905
TiVCF ₂ (Ti-Surface)	-0.881	-0.769(T)	-0.769	0.898	0.905	0.904
TiVCF ₂ (V-Surface)	-1.508	-1.390(T)	-1.390	0.894	0.902	0.902
V ₂ CF ₂	-1.101(T)	-1.187	-1.094	0.901	0.897	0.901
Ti ₂ C(OH) ₂	0.768	0.803	0.765	-0.101	0.072	-0.088
TiVC(OH) ₂ (Ti-	0.720	0.750	0.717	0 102	0 1 1 5	0.006
Surface)	0.720	0.730	0./1/	-0.102	0.113	-0.090
TiVC(OH) ₂ (V-Surface)	0.794	0.826	0.789	-0.013	0.131	0.010
V ₂ C(OH) ₂	0.670	0.670	0.633	0.247	0.212	0.094

Table S3 The classical diffusion constant (k), with and without Wigner ZPE-tunneling corrected diffusion constant (kwig/tunn) and percentage of tunneling at three different temperatures (T=100, 200 and 300 K) for Li ion on pristine and functionalized Ti_2C , TiVC and V₂C monolayers.

Pristino	т	K (s-1)	K (s-1)	QMT
I I Isune	1	N (S ⁻)	Kwig/tunn (S ⁻)	(%)
	100	2.007×10^{11}	2.032×10^{11}	1.230
Ti ₂ C	200	5.078×10^{11}	5.146×10 ¹¹	1.321
	300	6.920×10 ¹¹	6.976×10 ¹¹	0.803
TiVC (Ti	100	3.754×10 ¹¹	4.031×10^{11}	6.872
five (11-	200	8.962×10^{11}	9.190×10 ¹¹	2.481
Surface)	300	1.198×10^{12}	1.213×10^{12}	1.237
	100	6.062×10^{11}	6.646×10 ¹¹	8.787
TiVC (V-Surface)	200	1.366×10^{12}	1.386×10^{12}	1.443
	300	1.791×10^{12}	1.799×10^{12}	0.445
	100	2.803×10^{11}	3.787×10^{11}	25.984
V ₂ C	200	8.945×10 ¹¹	9.990×10 ¹¹	10.460
	300	1.317×10^{12}	1.393×10^{12}	5.456

F-group	Т	<i>k</i> in s ⁻¹	K _{wig/tunn} in s ⁻¹	Percentage of QMT
	100	0.762	1.039	26.603
Ti ₂ CF ₂	200	1.277×10 ⁶	1.341×10^{6}	4.773
	300	1.517×10^{8}	1.541×10^{8}	1.557
TiVCE. (Ti	100	1.823×10^{2}	2.600×10^{2}	29.885
$\frac{11VC\Gamma_2(11-}{Surface})$	200	3.781×10^{7}	4.076×10^{7}	7.237
Surface)	300	2.239×10 ⁹	2.310×10^{9}	3.074
	100	5.481×10	7.539×10	27.298
TiVCF ₂ (V-Surface)	200	2.153×10^{7}	2.265×10^{7}	4.945
	300	1.577×10^{9}	1.604×10^{9}	1.683
	100	2.385×10^{4}	6.500×10^{3}	/
V ₂ CF ₂	200	2.285×10^{8}	1.421×10^{8}	/
	300	4.854×10 ⁹	3.829×10 ⁹	/

O-group	Т	<i>k</i> in s ⁻¹	K _{wig/tunn} in s ⁻¹	Percentage of QMT
	100	1.794×10 ⁻⁵	1.902×10-3	99.057
Ti ₂ CO ₂	200	2.942×10 ³	1.172×10^{5}	97.490
	300	1.610×10 ⁶	5.139×10 ⁷	96.867
	100	2.431×10	2.665×10	8.780
$\frac{11000}{2}(11-$	200	1.137×10^{7}	1.129×10^{7}	/
Surface)	300	8.821×10 ⁸	8.739×10 ⁸	/
	100	2.479	0.662	/
TiVCO ₂ (V-Surface)	200	1.094×10^{6}	6.880×10^{5}	/
	300	8.326×10 ⁷	6.617×10^{7}	/
	100	4.037×10	9.386×10	56.989
V ₂ CO ₂	200	1.680×10^{7}	2.143×10^{7}	21.605
	300	1.255×10 ⁹	1.403×10^{9}	10.549

S-group	Т	<i>k</i> in s ⁻¹	K _{wig/tunn} in s ⁻¹	Percentage of QMT
	100	1.823×10^{3}	2.659×10^{3}	31.440
Ti ₂ CS ₂	200	1.185×10^{8}	1.293×10^{8}	8.353
	300	4.766×10 ⁹	4.946×10^{9}	3.639
TWCS (T)	100	1.412×10^{3}	1.893×10^{3}	25.409
Surface)	200	9.730×10 ⁷	1.039×10^{8}	6.352
Surface)	300	3.989×10 ⁹	4.101×10^{9}	2.731
	100	2.564×10^{3}	3.041×10^{3}	15.686
TiVCS ₂ (V-Surface)	200	1.247×10^{8}	1.278×10^{8}	2.426
	300	4.553×10 ⁹	4.587×10^{9}	0.741
	100	1.323×10^{4}	1.821×10^{4}	27.348
V ₂ CS ₂	200	2.857×10^{8}	3.099×10^{8}	7.809
	300	7.955×10 ⁹	8.250×10 ⁹	3.576