Supplementary Information

Single-step Chemical Vapour Deposition of Anti-pyramid MoS₂/WS₂ Vertical Heterostructures

Xueyin Bai,^{1,*} Shisheng Li,² Susobhan Das,¹ Luojun Du,¹ Yunyun Dai,¹ Lide Yao,³ Ramesh Raju,¹ Mingde Du,¹ Harri Lipsanen,¹ and Zhipei Sun^{1,4}

- 1. Department of Electronics and Nanoengineering, Aalto University, Finland
- 2. International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Japan
- 3. Department of Applied Physics, Aalto University, Finland
- 4. QTF Centre of Excellence, Department of Applied Physics, Aalto University, Finland

E-mail: xueyin.bai@aalto.fi

Calculation of SHG intensity from second-order susceptibility

The total SHG intensity in the heterostructure with an angle between two layers, $I_h(\theta)$, is expressed as¹

$$I_h(\theta) = I_1 + I_2 + 2\sqrt{I_1 I_2 \cos \theta}$$
 (1)

where $I_h(\theta)$ stands for the SHG intensity in the stacking heterostructure; θ is the stacking angle, which is defined as the different angle between two stacking layers and is 60° in AA' stacking. Meanwhile, the SH intensity I is proportional to the square of polarization P as $I \propto P^2$. The relationship between polarization and susceptibility is²

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots$$
 (2)

where $(\chi^{(1)})$, $(\chi^{(2)})$ and $(\chi^{(3)})$ stand for linear, second-order and third-order susceptibilities, respectively; and E is the electrical field of the incident light. Hence, it can be deduced that $I \propto (\chi^{(2)})^2$ and the equation (1) can be written as

$$I_h(\theta) \propto (\chi_1^{(2)})^2 + (\chi_2^{(2)})^2 + 2|\chi_1^{(2)}||\chi_2^{(2)}|\cos\theta$$
 (3)

Optical micrograph over a wide area and a histogram of grain sizes

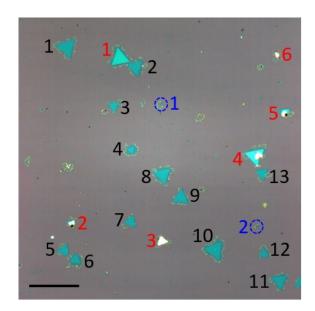


Figure S1. Optical micrograph over a wide area of MoS_2/WS_2 heterostructures (black numbers), bulk flakes (red numbers) and small monolayer WS_2 (blue numbers). Scale Bar, 100 μm .

Optical characterization of MoS₂ flakes on the substrate with Na₂MoO₄

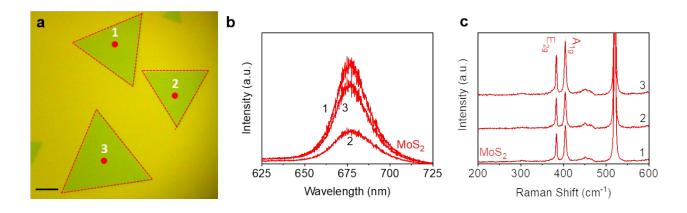


Figure S2. Optical characterization of MoS₂ flakes on the substrate with Na₂MoO₄. (a) Optical microscopy images of MoS₂ flakes (Scale Bar, 25 μ m). (b) PL and (c) Raman spectra of the marked positions in (a), respectively.

AFM characterization of a typical MoS₂/WS₂ heterostructure

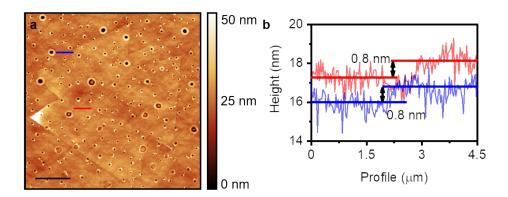


Figure S3. AFM image. (a) AFM image of MoS_2/WS_2 heterostructure (The holes are created by the etchant of sodium.³ (Scale Bar: 10 μ m). (b) the height profiles of marked lines in (a).

Statistical data of anti-pyramid heterostructures

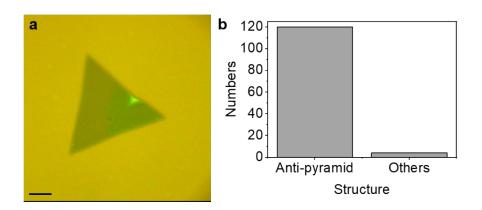


Figure S4. Statistical data of anti-pyramid heterostructures. (a) An example of a non-anti-pyramid heterostructure (Scale Bar, 10 μ m). (b) Statistics of anti-pyramid heterostructures and others.

Artificial anti-pyramid MoS₂/WS₂ heterostructure

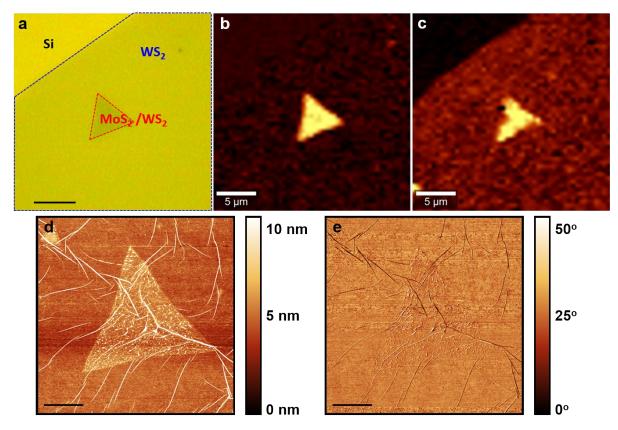


Figure S5. Artificial anti-pyramid MoS_2/WS_2 heterostructures by transferring a thin film of monolayer WS_2 on triangular flakes of monolayer MoS_2 . (a) Optical image of an artificial heterostructure (Scale Bar, 5 μ m). (b-c) Raman mapping at (b) 385 cm⁻¹ (MoS_2) and (c) 351 cm⁻¹ (WS_2) with a 532 nm laser, respectively. (d-e) AFM (d) topographic and (e) phase images.

Diffusion of precursors

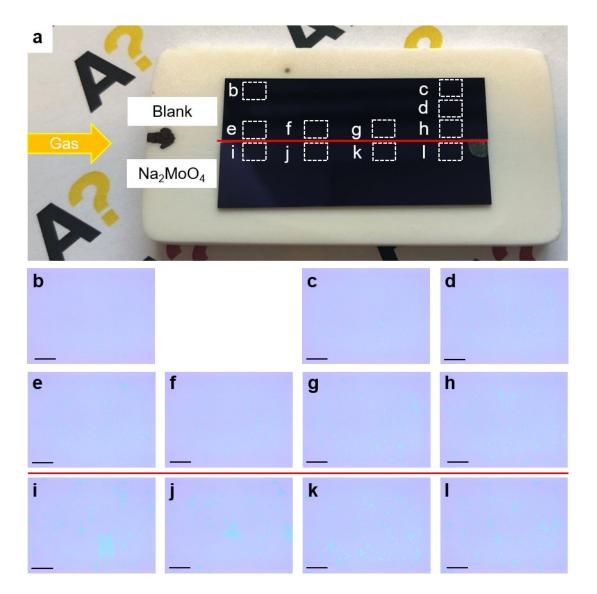


Figure S6. Control experiment of Na₂MoO₄ diffusion. (a) Photography of a blank substrate and substrate coated with Na₂MoO₄. (b-i) Optical microscopy images of the marked position in (a) (Scale Bar: $100 \, \mu m$). The MoS₂ flakes on the blank substrate indicate the diffusion of Na₂MoO₄.

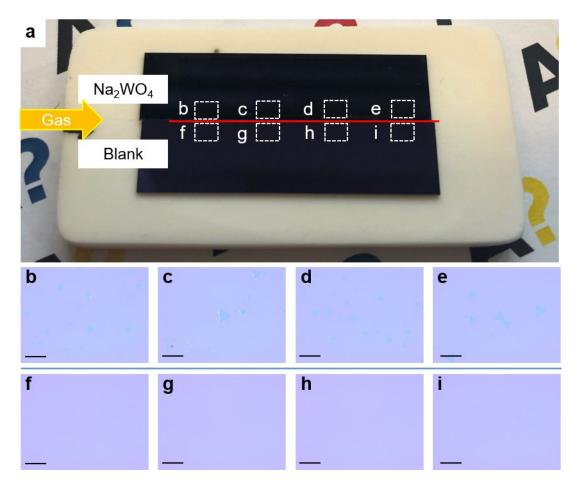


Figure S7. Control experiment of Na₂WO₄ diffusion. (a) Photography of a blank substrate and substrate coated with Na₂WO₄. (b-i) Optical microscopy images of the marked position in (a) (Scale Bar: $100 \mu m$). No WS₂ flakes on the blank substrate indicate no diffusion of Na₂WO₄.

Growth result of the mixture Na₂MoO₄ and Na₂WO₄

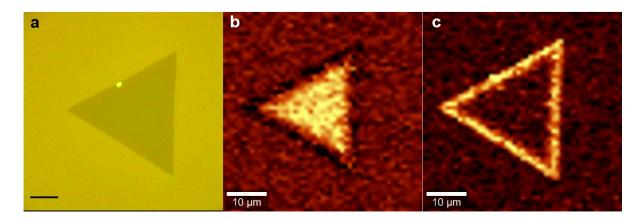


Figure S8. Growth result of the mixture of Na₂MoO₄ and Na₂WO₄ as precursors. (a) Optical image of a flake (Scale Bar, 10 μ m). (b-c) Raman mapping at (b) 385 cm⁻¹ (MoS₂) and (c) 351 cm⁻¹ (WS₂), respectively. Clearly, the mixture of Na₂MoO₄ and Na₂WO₄ as precursors forms a lateral heterostructure instead of the anti-pyramid vertical heterostructure.

References

- (1) Hsu, W.-T.; Zhao, Z.-A.; Li, L.-J.; Chen, C.-H.; Chiu, M.-H.; Chang, P.-S.; Chou, Y.-C.; Chang, W.-H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. *ACS Nano* 2014, **8**, 2951-2958.
- (2) Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered materials. *Adv. Mater.* 2018, **30**, 1705963.
- (3) Choi, S.H.; Kim, Y.J.; Yang, W.; Kim, K.K. Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. *J Korean Phys. Soc.* 2019, **74**, 1032-1038