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1. Choice of calculation unit cell for NPSLs in bulk and on a substrate  

The molecular theory calculations require to define a unit cell, which has periodic boundary 

conditions in the three dimensions (for bulk NPSLs) or in the two dimensions parallel to the substrate 

(for NPSL thin films). It is important to mention that the discretized lattice cells used to numerically 

solve the molecular theory have the same shape as the unit cell used in the calculation. In this way, 

during discretization, each unit cell is subdivided in an integer number of lattice cells in each direction 

(see Figure S2 in the Supporting Information of our previous work1). Each lattice cell has a fixed volume 

equal to 3, with  = 0.15 nm.   

1.1. Bulk NPSLs 

For bulk BCC, BCT and FCC cells, we used the two-NP unit cells shown in Figure 1a in the main 

text and Figure S1. The vectors that define the unit cell (see Figure S1) are: 

1 ( ,0,0) av           (S1) 

2 (0, ,0) av           (S2) 

3 (0,0, ) cv           (S3) 

where c = a for BCC, a < c < √2 for BCT and c = √2 for FCC. The fractional positions of the two NPs in 

the unit cell are f1 = (0,0,0) and f2 = (½,½,½). 

For bulk NPSLs, the volume fraction of the solvent, sv, determines the volume of the unit cell. 

The volume fraction of solvent is defined as: 
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where NP  is the volume fraction of the NPs in the cell, Vcell = a2c is the volume of the unit cell, NNP is 

the number of NPs per unit cell (two in this case), Vcore  = (4/3)R3 is the volume of the inorganic core 

and Vligand  = 4R2 σnPvP is the volume occupied by the ligand segments (σ, nP and vP are the ligand 

surface coverage, the number of segments per ligand and the volume of the segment, respectively). 

Therefore, the volume of the cell, Vcell, is fixed by sv because Vcore  and Vligand depend only on the 

properties of the NPs being modelled.  

 

Figure S1. Scheme of a BCT unit cell showing the vectors v1, v2 and v3 that define it. The system is 

periodic in the three dimensions. 

 

1.2. NPSLs Films  

The choice of the unit cell in thin NPSL films is more complex than for the bulk system. In NPSL 

films, periodic boundary conditions apply only in two directions. 

1.2.1. [110]SL plane parallel to the substrate. 

In this case, the [110]SL plane of the two-NP unit cell that forms the film (unit cell marked with 

red dashed lines in Figure S2a) should be parallel to the substrate. Note that the two-NP unit cell 

cannot be used as the unit cell for the film because it does not include the space between the NP 

layers and the substrate. Therefore, a different unit cell should be defined. Figure S2b shows in yellow 

the monoclinic unit cell employed in the calculations. This unit cell contains three NPs (one per NP 

layer). The vectors that define this cell are: 

0
1 1 2

2 2
( , ,0)

3 2
   

 
  

 

d
v       (S5) 

0
2 2 1

2 2
( , ,0)

3 2
   

 
  

 

d
v       (S6) 

3

1 1
, ,1

2 2 


 
  
 

w wdv          (S7) 

 



S3 
 

 

Figure S2. a. Scheme of a thin NPSL film having a BCC structure, three NP layers and its [110]SL plane 

aligned with the substrate. The two-NP unit cell is explicitly shown with red dashed lines. The distances 

d0, dp-p, dw-p and dw-w correspond to the center-corner distance in the BCC unit cell, the separation 

between NP layers, the separation between the interfaces and their closest NP layer and the 

separation between interfaces, respectively. b. Scheme of the same system as in panel a, explicitly 

showing the monoclinic unit cell used in the molecular theory calculations for thin NPSL films and the 

vectors v1, v2 and v3 that define it. The NPs with a yellow outline contribute a fraction of NP to the unit 

cell (the unit cell have three NPs in total). The system is periodic only in the directions given by v1 and 

v2, which are parallel to the interfaces. 

 

Note that v1 and v2 are parallel to the substrate. In Eqs. (S5)-(S7), d0 is the distance between 

the central and corner NPs of the original two-NP unit cell (see Figure S2a), dw-w is the separation 

between the two interfaces and , β1 and  β2 are auxiliary parameters that are related to the lattice 

parameters c and a of the original two-NP unit cell (shown in red dashed lines in Figure S2a) as: 
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The parameter d0 can also be related to a and c: 

2 2

0

1 1

4 2
 d c a          (S11) 

The distance between planes of NPs, dp-p can be calculated as: 

https://www.codecogs.com/eqnedit.php?latex=%20%5Calpha%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cfrac%7Bc%7D%7Ba%7D%20#0
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Finally, the distance between the interfaces and the layer of NPs closest to it, dw-p, is: 
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where Nlayer is the number of NP layers in the film (in this case, Nlayer = 3).  

The fractional position of the NP j in the unit cell is: 
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Finally, the volume fraction of the solvent in the cell, can be determined from Eq. (S4), using 

NNP = Nlayer = 3: 
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The volume of the cell can be obtained from its definition Vcell = v1 ⋅(v2  v3), where v1, v2 and v3 are 

defined by Eqs. (S5)-(S7). 

An analysis of the above equations shows that: i) ɸsv does is not completely fixed by the 

volume of the two-NP bulk cell (i.e., the volume of the cell in red dashed lines in Figure S2a) because 

of the presence of the regions located between the interfaces and the closest NP layer. ii) Once the 

properties of the NPs and c/a (i.e., the choice of BCC, BCT or FCC cell) are defined, the geometry of the 

system is determined only by two parameters, ɸsv and dw-w. This result can be obtained with the 

following reasoning: given ɸsv , one can calculate Vcell  from Eq. (S15). Now using the definition Vcell = v1 

⋅(v2  v3) and the known values of dw-w and c/a, one can use Eqs. (S5)-(S7) to obtain d0. Knowing d0 and 

c/a allows to independently obtain a and c using Eq. (S11) and, then, dp-p and dw-p via Eqs. (S12) and 

(S13). In practice, we plotted our results in terms of ɸsv and dw-p/dw-w (Figure 2b in the main text) 

because these are the parameters that are invariant when the NPSL-film unit cells for BCC, BCT and 

FCC are discretized in the same number of lattice cells (we remind the reader that the discretized 

lattice cells have the same geometry as the unit cell). 

1.2.1. [001]SL plane parallel to the substrate. 

  The case where the [001]SL plane is parallel to the substrate (Figure S3a) is much simpler than 

the previous one because the calculation cell is tetragonal and parallel to the substrate. The supercell 

considered in the calculation is shown in Figure S3b. Figure S3c shows the morphology diagram 

predicted for this orientation. 

 

https://www.codecogs.com/eqnedit.php?latex=%20f_2%20%3D%20%5CBig(%5Cfrac%7Bd_%7Bw-p%7D%2Bd_%7Bp-p%7D%7D%7Bd_%7Bw-w%7D%7D%2C%200%2C%200%5CBig)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f_2%20%3D%20%5CBig(%5Cfrac%7Bd_%7Bw-p%7D%2Bd_%7Bp-p%7D%7D%7Bd_%7Bw-w%7D%7D%2C%200%2C%200%5CBig)%20#0
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Figure S3. a. Scheme of a thin NPSL film having three NP layers and its [001]SL plane aligned with the 

substrate. The two-NP unit cell is explicitly shown with red dashed lines. The distances dw-p and dw-w 

correspond to the separation between the interfaces and their closest NP layer and the separation 

between interfaces, respectively. b. Scheme of the same system as in panel a, explicitly showing the 

tetragonal unit cell used in the molecular theory calculations for thin NPSL films and the vectors v1, v2 

and v3 that define it. The central NP contributes to one NP to the unit cell, while the other eight NPs 

contribute each with ¼ NP, thus the unit cell have three NPs in total. The system is periodic only in the 

directions given by v1 and v2, which are parallel to the interfaces. c. Phase diagram for thin NPSL films 

with their [001]SL plane parallel to the substrate as a function of dw-p/dw-w and the volume fraction of 

solvent in the NPSL, ɸsv, for σ = 4 ligands·nm-2, np = 12 CH2/ligand and R = 1 nm.  

 

2. Free energy differences for bulk superlattices of spherical NPs in different conditions.  

Figure S4 shows FFCC vs ɸsv plots for bulk superlattices of spherical NPs and different combinations 

of R (radius of NP core), np (number of CH2 segments per ligand) and  (density of ligands on the surface 

of the NPs). BCT phases are unstable in all conditions investigated.  
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Figure S4: Free-energy differences between different structures and the FCC phase, ΔFFCC for a bulk 

superlattice of spherical NPs as a function of the volume fraction of solvent in the lattice. Each plot 

corresponds to different calculation conditions: a. chain length, np = 8 CH2/ligand, b. np = 16 CH2/ligand. 

c. R = 0,75 nm, d. R = 2 nm, e. σ = 2 ligands·nm-2. Other calculation parameters: np = 12 CH2/ligand (c, 

d, e), σ = 4 ligands·nm-2 (a, b, c, d), R = 1.5 nm (a, b, e). 
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3. Free energy differences for thin films of spherical NPs in different conditions.  

 

Figure S5: Phase diagram for thin NPSL films with their [110]SL plane parallel to the substrate as a 

function of dw-p/dw-w and the volume fraction of solvent in the NPSL, ɸsv, for different conditions. a. σ 

= 4 ligands·nm-2. b. σ = 2 ligands·nm-2. Other calculation parameters: np = 12 CH2/ligand, R = 1 nm. The 

point reported for BCT in panel b corresponds to c/a = 1.1. 

 

4. Free energy differences for bulk superlattices of spherical NPs calculated with the pairwise 

additive-approximation 

 

Figure S6: Free energy differences between different spherical NPSLs structures and FCC phase 

determined using the pairwise-additive approximation, ΔFpairwise
FCC, as a function of the volume 

fraction of solvent in the lattice. Same parameters as in Figure 1 in the main text: np = 12 CH2/ligand, 

σ = 4 ligands·nm-2, R = 1.5 nm. 
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5. Analytical fitting formulas for pair potentials. 

The pair potentials between NPs, Fpair
ij, can be trivially decomposed in the Hamaker attraction 

term and a repulsive term resulting from the overlap of ligand coronas: 

, ,   pair pair Ham pair rep

ij ij ijF F F        (S16) 

The Hamaker term is given by: 
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where A is Hamaker’s constant, R is the radius of the NP and dij is the distance between the centers of 

the NP cores. In practice, this term represents a very small contribution to Fpair
ij. 

 The repulsive component of Fpair
ij is obtained from molecular-theory calculations involving 

only two NPs at a core-core distance dij in a system without periodic boundary conditions. We found 

that the resulting potential can fitted by an empirical analytical expression of the form: 

 , 2 3exp ...    pair rep

ij ij ij ijF A Bd Cd Dd  for dij > dcuf-off,min   (S18) 

where in general it is enough to use up the quadratic term in dij inside the exponential, but in some 

cases the cubic term should be included to improve the fitting. Eq. (S18) has a minimum cut-off 

distance, dcuf-off,min, which is given by the minimum core-core distance for which we were able to 

converge the molecular-theory calculations for the two approaching NPs. The potential given by Eq. 

(S18) may be used in the future as an effective potential to describe ligand-mediated repulsions 

between NPs. Figure S7 shows an example of numerical results for Fpar,rep
ij and the best fitting using 

Eq. (S18). 

 

Figure S7: Repulsive part of the pairwise-interaction energy, ΔFpair,rep, as a function of the separation 

between particles, dij. The points show the predictions of the molecular theory, the solid line is the 

best fitting curve to the empirical equation ΔFpair,rep= Aexp(Bdij + Cdij
2). Best fitting parameters: A = 4.02 

x 10-5 kBT, B = -8.84 nm-1, C = -1.41 nm-2. The minimum cut-off distance is dcut-off,min = 4.28 nm. The 

calculations correspond to a spherical NPs with np = 12 CH2/ligand, σ = 4 ligands·nm-2, R = 1.5 nm. 
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6.  Distances between opposing facets in TO-NPSLs. 

 In this section we will consider the distances between opposing facets of TO-NPs along the 

⊥[111]SL and the ⊥[100]SL directions. In general, we can write: 

2   surf surf center center center surfD D d        (S19)  

where Dsurf-surf is the distance between the surfaces of two involved NPs (e.g., the surfaces of the 

opposing squares in the ⊥[100]SL direction or the opposing hexagons in the ⊥[111]SL direction, see 

Figure 3b in the main text), Dcenter-center is the distance between the centers of those two NPs, and dcenter-

surf is the distance between the center of a NP and its surface in the direction that connects the two 

NPs. In the case of opposing square facets (interaction along the ⊥[100]SL direction), Figure 3a in the 

main text clearly shows that dcenter-surf = Lcube/2, which takes values between 1.3 and 1.6 nm for the 

system studied in Figure 3d in the main text. On the other hand, for opposing hexagonal facets 

(interaction along the ⊥[111]SL direction), the calculation is more complex because the vector that 

connects the centers of the NPs is perpendicular to the hexagonal facets only for the BCC cell, but not 

for BCT and FCC. However, the deviation from perpendicularity in the latter cases is not too large, so 

we will approximately consider that the vector connecting the two particles always goes through the 

center of the hexagons. Therefore, dcenter-surf  corresponds to the inner radius of the octahedron that 

gives origin to the TO (i.e., dcenter-surf will be the radius of a sphere that is tangent to the hexagonal 

facets of the TO). This approximation results in dcenter-surf = (31/2/6)Locta = 1.3 nm.  

In the example of a FCC cell analyzed in the main text, each NP has 12 near neighbors located 

at the same distance Dcenter-center. Therefore, according to the calculations in the previous paragraph, 

the separation between the surfaces of the opposing squares for NPs interacting in the ⊥[100]SL 

direction is 0 to 0.6 nm smaller (for Lcube = 2.6 and 3.2 nm, respectively) than the separation between 

the hexagonal facets of NPs interacting along the [111]SL direction.   
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