Supporting Information

Controlling of SiO₂ coating on hydrophobic CsPbBr₃ nanocrystals towards aqueous transfer and high luminescence

Meng Li, a Xiao Zhang, b* and Ping Yang a*

^aSchool of Material Science & Engineering, University of Jinan, No. 336, Nanxinzhuangxi Rd, Jinan, 250022, P. R. China. E-mail: <u>mse_yangp@ujn.edu.cn</u>

^bFuels and Energy Technology Institute and WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth WA 6845, Australia. E-mail: xiao.zhang7@postgrad.curtin.edu.au

	PH-TMOS (μL)	TMOS (μL)	Undisturbed Time (h)	H₂O (μL)
Cs ₄ PbBr ₆ -TMOS	2			
$CsPbBr_3@SiO_2$	2	10	12	300
CsPbBr ₃ -SiO ₂ -1	0	10	12	300
$CsPbBr_3$ -SiO_2-2	0	30	12	300
$CsPbBr_3$ -SiO_2-3	10	20	12	300
CsPbBr ₃ -SiO ₂ -4	0	10	1	300
$CsPbBr_3$ -SiO ₂ -5	2	10	12	1500
CsPbBr ₃ -Blank	0	0	12	300

Table S1 Preparation conditions of samples

Table S2 Components $B_1/B_2/B_3$, time constants $\tau_1/\tau_2/\tau_3$, and $\tau_{average}$

Sample	$ au_1$	τ_2	τ_3	B_1	B ₂	B_3	τ_{average}	CHISQ
CsPbBr ₃ @SiO ₂	17.53	49.30	3.87	35.16	60.29	4.55	43.60	1.04
CsPbBr ₃ -SiO ₂ -1	14.78	49.74	3.89	43.93	47.96	8.11	41.87	1.09
CsPbBr ₃ -SiO ₂ -2	14.43	45.73	3.89	43.21	48.38	8.41	38.45	1.07
CsPbBr ₃ -SiO ₂ -3	12.58	44.03	2.66	47.75	42.79	9.47	36.09	1.08
CsPbBr ₃ -Blank	10.92	3.83	37.03	46.09	31.57	22.34	25.21	1.04

Fig. S1 XPS C 1s (a) and O 1s (b) spectrum of CsPbBr₃@SiO₂, which were calibrated at 285.0 eV. (c) Peak fitting of the Pb 4f spectra of CsPbBr₃. Reproduced with permission from Ref. 1. Copyright 2018. The Royal Society of Chemistry.

Fig. S2 TEM image of sample CsPbBr₃-SiO₂-4, CsPbBr₃-SiO₂-5, and CsPbBr₃-Blank.

Fig. S3 XRD pattern of sample CsPbBr₃-SiO₂-3.

Fig. S4 Time-resolved PL decay curves.

* A tri-exponential function was applied to fit the decay curves:

$$F(t) = A + B_1 \exp\left(-t/\tau_1\right) + B_2 \exp\left(-\frac{t}{\tau_2}\right) + B_3 \exp\left(-\frac{t}{\tau_3}\right)$$
(1)

in which B₁, B₂, and B₃ is the normalized amplitudes of each components. τ_1 , τ_2 , and τ_3 represent the time constants. The average lifetime ($\tau_{average}$) was calculated by:

$$\tau_{average} = (B_1 \tau_1^2 + B_2 \tau_2^2 + B_3 \tau_3^2) / (B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3)$$
(2)

Fig. S5 Absorption spectra of sample CsPbBr₃-Blank and CsPbBr₃@SiO₂ NCs. The intensity was the same at 400 nm.

Table S3 Properties of sample $CsPbBr_3$ -Blank and $CsPbBr_3@SiO_2$

Sample	Absorption peak (nm)	PL peak (nm)	Fwhm (nm)	PLQY (%)	Morph ology	Mean Size (nm)	Stabilities
							against
							EtOH
CsPbBr ₃ -	FOG	E 2 2	17 10	.18 80	Cubic	16.76	E min: DL guanchad
Blank	500	525	17.10				5 mm. PL quencheu
$CsPbBr_3$	PbBr₃ 506 SiO₂	521 16	10 44	CF	Core-	core: 12.25	30 min: 62% of
@SiO₂			16.44	65	shell	total: 47	initial PL intensity

Reference

1 M. Li, X. Zhang, K. Matras-Postolek, H.-S. Chen and P. Yang, *J. Mater. Chem. C*, 2018, **6**, 5506-5513.