From Melt-diffusion to Ion-exchange method: Self-triggered Rich-O Group on the Surface of Acetylene black by Using S-EDA Solution to Boosting the Sulfur Content for Lithium-Sulfur Batteries

Chao Sun ^{a, b, c}, Chunxi Hai ^{a, b*}, Yuan Zhou ^{a, b*}, Yue Shen ^{a, b*}, Xiang Li ^{a, b}, Yanxia Sun ^{a, b}, Guotai Zhang ^{a, b, c}, Jinbo Zeng ^{a, b}, Shengde Dong ^{a, b, c}, Xiufeng Ren ^{a, b}, Guiping Peng ^{a, b, c}, Shengdi Zhang ^{a, b, c},

a. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 18th Xinning Road, Xining 810008, China
b. Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, 18th Xinning Road, Xining 810008, China
c. University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author.

*E-mail: <u>haicx@isl.ac.cn</u>

Fig. S1 (a)-(b) SEM of Acetylene black, (c)-(d) SEM of Acetylene black@Mp-S, (e)-(f) SEM of Acetylene black@Re-S.

Fig. S2 The elemental mapping and energy dispersive spectroscope (EDS) area analysis of Acetylene black@Re-S.

Fig. S3 The elemental mapping and energy dispersive spectroscope (EDS) area analysis of Acetylene black@Mp-S.

Fig. S4 UV-vis spectrum of the S–EDA solution and S–EDA + H^+ (pH=2) solution.

Fig. S5 HR-TEM images. HR-TEM images. (a) Acetylene black@Mp-S, (b) Acetylene black@Re-S.

Fig. S6 XPS spectrum of Acetylene black before (a), (b) and after (c), (d) disposing with EDA solution.

		0	1		
Sample	C-C	C=C	© -C-O		© 0-C-0
Acetylene black	81.1%	18.9%	24.7%	54.9%	20.4%
Acetylene black-EDA	79.1%	20.9%	70.3%	0	29.7%

Table S1. The proportion of C and O binding species.

Fig. S7 XRD patterns of Acetylene black, Acetylene black@Re-S, Acetylene black@Mp-S, and pristine S.

Fig. S8 (a) TG and DSC curves of Acetylene black@Mp-S. (b) TG and DSC curves of Acetylene black@Re-S.

Fig. S9 (a) Nitrogen adsorption-desorption isotherms, and (b) pore size distribution obtained using DFT method of Acetylene black, Acetylene black@Mp-S, and Acetylene black@Re-S.

Table S2. The specific surface area and pore volume of Acetylene black, Acetylene
black@Mp-S, and Acetylene black@Re-S were measured by
Brunauer–Emmett–Teller theory with the P/P_0 range from 0.00001 to 0.1.

Sample	Specific surface area [m ² g ⁻¹]		Pore	Micropore
	BET	DFT	volume[cm ³ g ⁻¹]	content [%]
Acetylene black	377.6	285.9	0.739	0
Acetylene black@Mp-S	144.7	90.0	0.316	0
Acetylene black@Re-S	66.3	64.5	0.183	0

Fig. S10 Galvanostatic discharge curve of Acetylene black@Re-S with conductive agent.

Fig. S11 Long-term cycling performance of Acetylene black@Mp-S, and Acetylene black@Re-S.

Fig. S12 Rate performance of pristine Acetylene black@Mp-S, and Acetylene black@Re-S.

Fig. S13 Electrochemical impedance spectroscopy was tested after 100 and 200 cycles for Acetylene black@Mp-S and Acetylene black@Re-S.

Fig. S14 High areal S loading and low E/S ratio measurement for both of Acetylene black@Mp-S, Acetylene black@Re-S.

Fig. S15 The peaks of polysulfides in a red ring of 25.56°. (a) Acetylene black@Mp-S cathode, (b) Acetylene black@Re-S cathode.