Core@Shell and Lateral Heterostructures Composing of SnS and

NbS₂

Zhiwei Wang,^{‡a,b} Xiang Wang,^{‡b} Qian Chen,^a Xiaoshan Wang,^{a,b} Xiao Huang^{a,b*} and Wei Huang^{a,b*}

a. Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. E-mail: iamwhuang@nwpu.edu.cn

b. Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China. E-mail: iamxhuang@njtech.edu.cn ‡ These authors contributed equally to this work.

Figure S1 TEM image of SnS microplates.

Figure S2 XRD pattern of SnS microplates.

Figure S3 XPS full scan spectrum of the $SnS@NbS_2$ core@shell heterostructures.

Figure S4 SEM image of the product obtained at 280 °C with the ratio of Nb : Sn being 3 : 7.

Figure S5 (a) SEM image and (b) TEM image of NbS_2 nanosheets obtained at 300 °C.

Figure S6 XRD pattern of NbS₂ nanosheets obtained at 300 °C.

Figure S7 SEM image of the product obtained at 300 °C with the ratio of Nb : Sn being 2 : 8.

Figure S8 SEM image of the product obtained at 300 °C with the ratio of Nb : Sn being 4 : 6.

Figure S9 SEM image of as-prepared SnS/NbS₂ lateral heterostructures.

Figure S10 STEM image and EDX mapping of a typical SnS/NbS_2 lateral heterostructure.

Figure S11 XPS full scan spectrum of the SnS/NbS₂ lateral heterostructures.

Figure S12 (a) TEM image and (b) XRD pattern of the product obtained at 320 °C for 3 h.

Figure S13 (a) Drain current (I_d) characteristics of back-gated thin film FETs based on SnS microplates for drain-source voltages (V_{ds}) varied from -10 to 10 V at 0 V gate voltage (V_g). (b) The I_d - V_{ds} curves of SnS microplates at various V_g from -20 to 20 V.

Figure S14 Drain current (I_d) characteristics of back-gated thin film FETs based on (a) NbS₂ nanosheets, (c) SnS/NbS₂ lateral heterostructures and (e) SnS@NbS₂ core@shell heterostructures for drain-source voltages (V_{ds}) varied from -5 to 5 V at 0 V gate voltage (V_g). The I_d - V_{ds} curves of (b) NbS₂ nanosheets, (d) SnS/NbS₂ lateral heterostructures and (f) SnS@NbS₂ core@shell heterostructures at various V_g from -20 to 20 V.

Figure S15 EDX spectrum of SnS/NbS₂ lateral heterostructures.

Figure S16 Schematic band alignment diagram for SnS and NbS₂ before and after contact. E_F , E_{CB} , and E_{VB} denote Fermi level, conduction band and valence band, respectively.

Figure S17 (a) Temporal photocurrent response and (b) a zoom-in view of the temporal photocurrent response of the photodetector based on SnS/NbS_2 lateral heterostructures. The light source used for all measurements was a 405 nm laser with a power of 3.52 mW.

Figure S18 Temporal photocurrent response of $SnS@NbS_2$ core@shell heterostructures to lasers with different wavelengths (405nm, 532 nm and 633 nm).

Figure S19 UV-vis absorption spectrum of NbS₂.