Supporting information for:

High-voltage quasi-solid-state flexible supercapacitor with wide operational temperature based on a low-cost "water-in-salt" hydrogel electrolyte

Yongqi Deng, Hongfei Wang, Kefu Zhang, Jingwen Shao, Jun Qiu, Juan Wu, Yihan

Wu, Lifeng Yan*

Figure S1. XPS survey spectra (a), N 1s pattern (b) of NG.

Figure S2. The contact angle between NG and 1M CH₃COOK (a), 24M CH₃COOK (b), and between AC and 24M CH₃COOK (c).

Figure S3. SEM image of freeze-dried NG.

Figure S4. Digital photos of the hydrogel electrolyte PAAK/CMC-24M (a, b, c); SEM image of the polyelectrolyte hydrogel PAAK/CMC-water (d) and PAAK/CMC-

24M.

Figure S5. Optical image of the stretched PAAK/CMC-24M in the universal tensile

testing machine.

Figure S6. The AC impedance spectroscopy of different concentrations of CH₃COOK (a) and PAAK/CMC-24M from -20 °C to 70 °C (b).

Hydrogel electrolyte	Electrolyte concentration	Ionic conductivity	Ref
PVA/LiTFSI	21 m	6.52 mS cm ⁻¹	26
PAAm/LiClO ₄	1 m	31.1 mS cm ⁻¹	31
PAA-g-EG/KOH	6 m	6.28 mS cm ⁻¹	32
PAAM-LiSO ₄	1 m	8 mS cm ⁻¹	30
Chitosan/LiTFSI	4 m	13.7 mS cm ⁻¹	29
AG/PAAm/LiCl	1 m	13.0 mS cm ⁻¹	33

Table S1. Comparison of the ionic conductivity between the hydrogel electrolyte in this work and the reported references.

Figure S7. The viscosity and ionic conductivity of different concentrations of CH₃COOK (a), PAAK/CMC gel conductivity at different concentrations of CH₃COOK (b).

Figure S8. CV curves at various voltage windows (a), GCD profiles from 1.7 V -2.1 V at 0.5A g⁻¹ (b), GCD profiles from 0.3 A g⁻¹ to 4 A g⁻¹ (c), CV curves from 5 mV s⁻¹ to 100 mVs⁻¹ (d), EIS (e) and Ragone plot (f) of the assembled aqueous NG//NG EDLC using 24M CH₃COOK electrolyte.

Figure S9. Various voltage windows at 5 mV s⁻¹ of NG//NG all-solid-state supercapacitor with PAAK/CMC-24M polyelectrolyte gel.

Figure S10. Ragone plot based on area of the NG//NG supercapacitor using

PAAK/CMC-24M.

Figure S11. Electrochemical impedance spectroscopy of the NG//NG all-solid-state supercapacitor with PAAK/CMC-24M polyelectrolyte hydrogel working at different temperature

Table S2.	Comparison o	of the energy	densities	between	our v	work and	the re	eported
		re	eferences					

Positive/ Negative electrode	Electrolyte	Voltage window (V)	Energy density (W h kg-1)	Power density (kW kg-1)	Ref
Polyaniline- derived carbon nanorods	21 m LiTFSI	2.2 V	29.6 W h kg-1	1100 W h kg-1	17
N-doped multi- scale porous carbon	20 m LiTFSI	2.4 V	33 W h kg- 1	300 W h kg-1	32
Activated carbon	17 m NaClO ₄	2.3 V	23.7 W h kg-1	1170 W h kg-1	13
Activated carbon	30 m CH ₃ COOK	2.0 V	19.8 W h kg-1	500 W h kg-1	20
N/S/O-doped cabon	7 m (gel) LiTFSI	2.3 V	20.6 W h kg-1	1150 W h kg-1	29
Activated carbon	10 m (gel) LiTFSI	2.2 V	23.5 W h kg-1	110 W h kg-1	25