Electronic Supplementary Information

Structural-Intensified PtCoRh Spiral Nanowires as Highly Active and Durable Electrocatalysts for Methanol Oxidation

Xiaowei Chen,^{al} Wei Wang,^{a§l} Xuejiao Chen,*^a Xinyan Liao,^a Zixi Lyu,^a Kai Liu,^a and Shuifen Xie*^a

^aCollege of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
 [§]Present Address: Department of Chemistry, National University of Singapore, 3 Science
 Drive 3, 117543, Singapore

^IThese authors contribute equally to this work.

*Corresponding Author email: xjchen@hqu.edu.cn, or sfxie@hqu.edu.cn

Figure S1. TEM images of the PtCoRh products obtained with different amounts of glucose: (a) 0 mg; (b) 30 mg; (c) 60 mg; (d) 90 mg.

Figure S2. TEM images of the PtCoRh products obtained with different amounts of CTAC: (a) 0 mg; (b) 32 mg; (c) 64 mg.

Figure S3. TEM images (a, b) and histogram of the statistical diameter (c) and thread pitch (d) distributions of the as-prepared $Pt_{85}Co_{15}$ SNWs.

Figure S4. TEM images (a, b) and histogram of the statistical diameter (c) and thread pitch (d) distributions of the as-prepared $Pt_{85}Co_{10}Rh_5$ SNWs.

Figure S5. TEM images (a, b) and histogram of the statistical diameter (c) and thread pitch (d) distributions of the as-prepared Pt₇₇Co₁₁Rh₁₂ SNWs.

Figure S6. Structure and composition analysis of the Pt₈₅Co₁₅ SNWs. (a) TEM image; (b) HRTEM image; (c) STEM-EDS line-scanning profile; (d) STEM-EDS mapping; (e) SEM-EDS pattern; (f) PXRD pattern.

Figure S7. PXRD pattern of the as-prepared Pt₈₅Co₁₀Rh₅ SNWs.

Figure S8. TEM images of the $Pt_{77}Co_{11}Rh_{12}$ SNWs intermediates obtained at different reaction times at 130 °C: (a) 1 h; (b) 3 h. The inserts are the size distribution histograms of the corresponding intermediates.

Figure S9. TEM images of the $Pt_{77}Co_{11}Rh_{12}$ SNWs intermediates obtained at different reaction times at 170 °C: (a) 1 min; (b) 1 h; (c) 3h; (d) 6 h.

Figure S10. ICP-MS analyses of the $Pt_{77}Co_{11}Rh_{12}$ SNWs intermediates obtained at different reaction times.

Figure S11. TEM of the PtCoRh nanodendrimer synthesized at 170 °C in a one-step approach with the same formula employed in synthesizing the $Pt_{77}Co_{11}Rh_{12}$ SNWs.

Figure S12. Selected MOR CV cycles of the (a) $Pt_{77}Co_{11}Rh_{12}$ SNWs, (b) $Pt_{85}Co_{10}Rh_5$ SNWs, (c) $Pt_{85}Co_{15}$ SNWs, and (d) Pt black.

Figure S13. Pt 4f (a) and O 1*s* (b) XPS spectra of the Pt₇₇Co₁₁Rh₁₂ SNWs, Pt₈₅Co₁₀Rh₅ SNWs and Pt₈₅Co₁₅ SNWs, respectively.

ECSA ($m^2 g^{-1}_{pt}$)	Pt black	Pt ₈₅ Co ₁₅ SNWs	Pt ₈₅ Co ₁₀ Rh ₅ SNWs	Pt ₇₇ Co ₁₁ Rh ₁₂ SNWs
H _{upd}	14.4	25.4	29.4	31.4
CO stripping	12.9	23.1	27.2	35.7

Table S1. ECSAs of the $Pt_{77}Co_{11}Rh_{12}$, $Pt_{85}Co_{10}Rh_5$, $Pt_{85}Co_{15}$ SNWs and the Pt black.

Atomic %	Pt	Со	Rh
Pt ₈₅ Co ₁₅ SNWs	85	15	N.A.
Pt ₈₅ Co ₁₀ Rh ₅ SNWs	85	10	5
Pt77Co11Rh12 SNWs	77	11	12

Table S2. ICP-MS analyses of the $Pt_{85}Co_{15}$, $Pt_{85}Co_{10}Rh_5$, and $Pt_{77}Co_{11}Rh_{12}$ SNWs.

Catalyst	Electrolyte Solution	MA	SA	Refs
Pt ₇₇ Co ₁₁ Rh ₁₂ SNWs	0.1 M HClO ₄ +0.5 M methanol	1.48 A mg ⁻¹	4.76 mA cm ⁻²	This work
Pt ₅₀ Au ₁₀ Cu ₄₀ NWs/C	0.5 M H ₂ SO ₄ +1.0 M methanol	0.928 A mg ⁻¹	0.88 mA cm^{-2}	1
Pt ₆₉ Ni ₁₆ Rh ₁₅ NWs/C	0.1 M HClO ₄ +0.5 M methanol	1.72 A mg^{-1}	2.49 mA cm^{-2}	2
Pt NWs	-	$\sim 0.5 \text{ A mg}^{-1}$	-	3
Pt ₃ Co NWs/C	0.1 M HClO ₄ +0.2 M methanol	1.02 A mg^{-1}	1.95 mA cm^{-2}	3
Pt ₉₅ Co ₅ NWs	0.5 M H ₂ SO ₄ +1.0 M methanol	0.49 A mg ⁻¹	2.54 mA cm^{-2}	4
PtRu NWs	0.1 M HClO ₄ +0.5 M methanol	0.82 A mg^{-1}	1.16 mA cm^{-2}	5
Pd ₇₃ Pt ₂₇ NWs	0.5 M H ₂ SO ₄ +1.0 M methanol	0.53 A mg^{-1}	-	6
Pt1Cu1-AA	0.5 M H ₂ SO ₄ +1.0 M methanol	2.252 A mg^{-1}	6.09 mA cm^{-2}	7
Pt ₃ Co DENC/C	0.5 M H ₂ SO ₄ +1.0 M methanol	~0.66 A mg ⁻¹	4.14 mA cm^{-2}	8
PtNi CNCs	0.5 M H ₂ SO ₄ +0.5 M methanol	$\sim 0.68 \text{ A mg}^{-1}$	1.37 mA cm^{-2}	9

Table S3. Comparison of the recently reported Pt-based electrocatalysts for MOR in acidic media.

Octahedron Pt–Ag NCs	0.1 M HClO ₄ +0.5 M methanol	0.73 A mg ⁻¹	6.61 mA cm^{-2}	10
TPH Pt NCs	0.1 M HClO ₄ +1.0 M methanol	-	8.1 mA cm^{-2}	11

REFERENCES

- Y. Liu, G. Ren, M. Wang, Z. Zhang, Y. Liang, S. Wu and J. Shen, *J. Alloys Compd.*, 2019, 780, 504-511.
- W. Zhang, Y. Yang, B. Huang, F. Lv, K. Wang, N. Li, M. Luo, Y. Chao, Y. Li, Y. Sun, Z. Xu, Y. Qin, W. Yang, J. Zhou, Y. Du, D. Su and S. Guo, *Adv. Mater.*, 2019, **31**, 1805833.
- L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo and X. Huang, *Nat. Commun.*, 2016, 7, 11850.
- 4. Q. Lu, L. Sun, X. Zhao, J. Huang, C. Han and X. Yang, Nano Res., 2018, 11, 2562-2572.
- L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang and S. Dong, J. Am. Chem. Soc., 2018, 140, 1142-1147.
- 6. M. Rana, P. K. Patil, M. Chhetri, K. Dileep, R. Datta and U. K. Gautam, J. Colloid Interface Sci., 2016, 463, 99-106.
- H.-H. Li, Q.-Q. Fu, L. Xu, S.-Y. Ma, Y.-R. Zheng, X.-J. Liu and S.-H. Yu, *Energy Environ*. *Sci.*, 2017, 10, 1751-1756.
- H. Du, S. Luo, K. Wang, M. Tang, R. Sriphathoorat, Y. Jin and P. K. Shen, *Chem. Mater.*, 2017, 29, 9613-9617.
- P. Yang, X. Yuan, H. Hu, Y. Liu, H. Zheng, D. Yang, L. Chen, M. Cao, Y. Xu, Y. Min, Y. Li and Q. Zhang, *Adv. Funct. Mater.*, 2018, 28, 1704774.
- J. Zhang, H. Li, J. Ye, Z. Cao, J. Chen, Q. Kuang, J. Zheng and Z. Xie, *Nano Energy*, 2019, **61**, 397-403.
- Y. Li, Y. Jiang, M. Chen, H. Liao, R. Huang, Z. Zhou, N. Tian, S. Chen, S. Sun, *Chem. Commun.*, 2012, 48, 9531-9533.