## **Supporting Information**

## **Edge Reconstructions of Black Phosphorene: A Global Search**

Yue Liu,<sup>a</sup> Da Li,<sup>a\*</sup> Tian Cui<sup>b,a</sup>

<sup>a</sup>State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China.

<sup>b</sup>School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.

- Figure S1. The second most stable structures of ZZ, AC and SD edges at various local phosphorus concentrations.
- Figure S2. The third most stable structures of ZZ, AC and SD edges at various local phosphorus concentrations.
- Figure S3. The fourth most stable structures of ZZ, AC, and SD edges at various local phosphorus concentrations.
- Figure S4. The detailed planar diagram of the polygon arrangement of AC edges.
- Figure S5. Edge formation energy spectra and the corresponding structures of the SD edge of black phosphorene at a local phosphorus concentration of 0.715 atoms/Å.
- Figure S6. Edge formation energy spectra of the ZZ, AC, and SD edges of black phosphorene.
- Figure S7. The total energy profiles of the most stable and second most stable edges at 300K and 800K during AIMD simulations.

Figure S8. Phonon spectra of the lowest energy structure.

Figure S9. Band structures of ZZ0 (pristine ZZ), ZZ2-i (ZZRC-o), ZZ2-ii (ZZRC-i), and AC4-i.

- Figure S10. Band structure of the 10 most stable ZZ edges of black phosphoene ZZ nanoribbons.
- Figure S11. Band structure of the 10 most stable AC edges of black phosphorene AC nanoribbons.
- Figure S12. Band structure of the 10 most stable SD edges of black phosphorene SD nanoribbons.

Table S1 The edge formation energies of the zigzag edges in the database.

Table S2 The edge formation energies of the armchair edges in the database.

Table S3 The edge formation energies of the skewed diagonal edges in the database.



**Figure S1.** The second most stable structures of ZZ, AC and SD edges at various local phosphorus concentrations. The  $\bigcirc$ ,  $\bigcirc$ , and  $\blacklozenge$  shapes indicate the edges found in the current work only, in previous theoretical studies, and in previous theoretical and experimental works, respectively.



**Figure S2.** The third most stable structures of ZZ, AC and SD edges at various local phosphorus concentrations. The  $\bigcirc$ ,  $\bullet$ , and  $\diamond$  shapes indicate the edges found in the current work only, in previous theoretical studies, and in previous theoretical and experimental works, respectively.



**Figure S3.** The fourth most stable structures of ZZ, AC, and SD edges at various local phosphorus concentrations. The  $\bigcirc$ ,  $\bullet$ , and  $\diamond$  shapes indicate the edges found in the current work only, in previous theoretical studies, and in previous theoretical and experimental works, respectively.



**Figure S4.** The detailed planar diagram of the polygon arrangement of AC edges. (a) The edges are fully occupied by polygons; (b)The edges are not fully occupied by polygons. Red, green and yellow polygons represent the quadrilateral, pentagon and hexagon, respectively.



**Figure S5.** Edge formation energy spectra and the corresponding structures of the SD edge of black phosphorene at a local phosphorus concentration of 0.715 atoms/Å. The SD8-ii and SD8-ix edges have been proposed by previous theoretical work. The other seven edges are first proposed in this work.



**Figure S6.** Edge formation energy spectra of the ZZ, AC, and SD edges of black phosphorene. The inset in each column shows the 10 most stable edges. The edge formation energies of the experimentally observed edges are highlighted by blue points; the edges energies of previous theoretically proposed edges are highlighted by red points.



**Figure S7.** The total energy profiles of the most stable edges (a) ZZ10-i, (b) AC10-i and (c) SD10i edges and second most stable edges (d) ZZ10-ii, (e) AC10-ii, (f) SD8-i at 300 K (blue line) and 800 K (green line) during AIMD simulations. Insets in each figure are structure snapshots of the AIMD simulations at 0 and 5000 fs.



**Figure S8.** Phonon spectra of the lowest energy structure (a) ZZ10-i, (b) AC10-i, (c) SD10-i. The phonon spectra calculations were carried out with  $1 \times 3 \times 1$  supercell using the PHONOPY code.<sup>1</sup>



**Figure S9.** Band structures of (a) ZZ0 (pristine ZZ), (b) ZZ2-i (ZZRC-o), (c) ZZ2-ii (ZZRC-i), (d) AC4-i. Corresponding band gaps are directly shown in each figure.



**Figure S10.** Band structure of the 10 most stable ZZ edges of black phosphoene ZZ nanoribbons. The 7 ZZ edges (a) ZZ10-i, (b) ZZ10-ii, (c) ZZ8-i, (d) ZZ12-i, (f) ZZ10-iii, (g) ZZ12-ii and (i) ZZ4-i are semiconductors. The (e) ZZ11-i is a narrow bandgap semiconductor. The 2 edges (h) ZZ12-iii and (j) ZZ12-iv are metallic. Corresponding band gaps are directly shown in each figure.



**Figure S11.** Band structure of the 10 most stable AC edges of black phosphorene AC nanoribbons. The 5 AC edges (a) AC10-i, (b) AC10-ii, (c) AC10-iii, (d) AC8-i and (e) AC12-i are semiconductors. The other 5 edges (f) AC9-i, (g) AC11-i, (h) AC11-ii, (i) AC7-i and (j) AC9-ii are metallic. Corresponding band gaps are directly shown in each figure.



**Figure S12.** Band structure of the 10 most stable SD edges of black phosphorene SD nanoribbons. The 6 SD edges (a) SD10-i, (b) SD8-i, (c) SD4-i, (d) SD6-i, (e) SD4-ii, and (h) SD8-ii are semiconductors. The 2 edges (f) SD7-i and (j) SD9-ii are narrow bandgap semiconductors. The other 2 edges (g) SD9-i and (i) SD7-ii are metallic. Corresponding band gaps are directly shown in each figure.

| ZZx-i  | Edge energy<br>(eV/Å) | ZZx-ii  | Edge energy<br>(eV/Å) | ZZx-iii  | Edge energy<br>(eV/Å) | ZZx-iv  | Edge energy<br>(eV/Å) |
|--------|-----------------------|---------|-----------------------|----------|-----------------------|---------|-----------------------|
| ZZ-0   | 0.24081               |         |                       |          |                       |         |                       |
| ZZ1-i  | 0.24460               |         |                       |          |                       |         |                       |
| ZZ2-i  | 0.21269               | ZZ2-ii  | 0.27243               | ZZ2-iii  | 0.38241               |         |                       |
| ZZ3-i  | 0.23174               |         |                       |          |                       |         |                       |
| ZZ4-i  | 0.19665               | ZZ4-ii  | 0.26411               | ZZ4-iii  | 0.31586               |         |                       |
| ZZ5-i  | 0.24233               | ZZ5-ii  | 0.25972               | ZZ5-iii  | 0.28543               | ZZ5-iv  | 0.32097               |
| ZZ6-i  | 0.22397               | ZZ6-ii  | 0.23549               | ZZ6-iii  | 0.31387               |         |                       |
| ZZ7-i  | 0.25390               | ZZ7-ii  | 0.27159               | ZZ7-iii  | 0.28029               | ZZ7-iv  | 0.35667               |
| ZZ8-i  | 0.16414               | ZZ8-ii  | 0.28755               | ZZ8-iii  | 0.37847               |         |                       |
| ZZ9-i  | 0.21450               | ZZ9-ii  | 0.22705               | ZZ9-iii  | 0.23779               | ZZ9-iv  | 0.25503               |
| ZZ10-i | 0.10001               | ZZ10-ii | 0.11861               | ZZ10-iii | 0.18682               | ZZ10-iv | 0.22781               |
| ZZ11-i | 0.17442               | ZZ11-ii | 0.20149               | ZZ11-iii | 0.24823               | ZZ11-iv | 0.30283               |
| ZZ12-i | 0.16747               | ZZ12-ii | 0.19197               | ZZ12-iii | 0.19227               | ZZ12-iv | 0.20856               |
| ZZ13-i | 0.22025               | ZZ13-ii | 0.24021               | ZZ13-iii | 0.27984               | ZZ13-iv | 0.29239               |

 Table S1 The edge formation energies of the zigzag edges in the database.

| ACx-i  | Edge energy<br>(eV/Å) | ACx-ii  | Edge energy<br>(eV/Å) | ACx-iii  | Edge energy<br>(eV/Å) | ACx-iv  | Edge energy<br>(eV/Å) |
|--------|-----------------------|---------|-----------------------|----------|-----------------------|---------|-----------------------|
| AC-0   | 0.35756               |         |                       |          |                       |         |                       |
| AC1-i  | 0.31298               |         |                       |          |                       |         |                       |
| AC2-i  | 0.26186               | AC2-ii  | 0.33461               |          |                       |         |                       |
| AC3-i  | 0.27894               |         |                       |          |                       |         |                       |
| AC4-i  | 0.29690               | AC4-ii  | 0.30090               |          |                       |         |                       |
| AC5-i  | 0.27007               | AC5-ii  | 0.27539               |          |                       |         |                       |
| AC6-i  | 0.24911               | AC6-ii  | 0.25255               |          |                       |         |                       |
| AC7-i  | 0.24601               | AC7-ii  | 0.27129               | AC7-iii  | 0.30833               |         |                       |
| AC8-i  | 0.22505               | AC8-ii  | 0.25155               | AC8-iii  | 0.25488               | AC8-iv  | 0.27262               |
| AC9-i  | 0.23115               | AC9-ii  | 0.24822               | AC9-iii  | 0.27628               | AC9-iv  | 0.27916               |
| AC10-i | 0.19300               | AC10-ii | 0.21274               | AC10-iii | 0.22438               | AC10-iv | 0.27018               |
| AC11-i | 0.23913               | AC11-ii | 0.24057               | AC11-iii | 0.26164               | AC11-iv | 0.26940               |
| AC12-i | 0.23015               | AC12-ii | 0.25421               | AC12-iii | 0.28005               | AC12-iv | 0.29147               |
| AC13-i | 0.24867               | AC13-ii | 0.25665               | AC13-iii | 0.29679               | AC13-iv | 0.30677               |

Table S2 The edge formation energies of the armchair edges in the database.

| SDx-i  | Edge energy<br>(eV/Å) | SDx-ii  | Edge energy<br>(eV/Å) | SDx-iii  | Edge energy<br>(eV/Å) | SDx-iv  | Edge energy<br>(eV/Å) |
|--------|-----------------------|---------|-----------------------|----------|-----------------------|---------|-----------------------|
| SD-0   | 0.28279               |         |                       |          |                       |         |                       |
| SD1-i  | 0.29078               |         |                       |          |                       |         |                       |
| SD2-i  | 0.23165               |         |                       |          |                       |         |                       |
| SD3-i  | 0.21541               | SD3-ii  | 0.22131               |          |                       |         |                       |
| SD4-i  | 0.17171               | SD4-ii  | 0.18794               |          |                       |         |                       |
| SD5-i  | 0.20493               |         |                       |          |                       |         |                       |
| SD6-i  | 0.18112               | SD6-ii  | 0.20469               | SD6-iii  | 0.21983               | SD6-iv  | 0.25903               |
| SD7-i  | 0.18830               | SD7-ii  | 0.19618               | SD7-iii  | 0.20767               | SD7-iv  | 0.20847               |
| SD8-i  | 0.16783               | SD8-ii  | 0.19245               | SD8-iii  | 0.21470               | SD8-iv  | 0.22207               |
| SD9-i  | 0.19093               | SD9-ii  | 0.20142               | SD9-iii  | 0.23958               | SD9-iv  | 0.27220               |
| SD10-i | 0.14238               | SD10-ii | 0.22705               | SD10-iii | 0.25497               | SD10-iv | 0.26464               |
| SD11-i | 0.22066               | SD11-ii | 0.24928               | SD11-iii | 0.26453               | SD11-iv | 0.28632               |
| SD12-i | 0.21159               | SD12-ii | 0.22516               | SD12-iii | 0.22901               | SD12-iv | 0.23187               |
| SD13-i | 0.25493               | SD13-ii | 0.27865               | SD13-iii | 0.29450               | SD13-iv | 0.29622               |

 Table S3 The edge formation energies of the skewed diagonal edges in the database.

## References

1. A. Togo and I. Tanaka, *Scripta Materialia*, 2015, **108**, 1-5.