Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting information

Rod-like Nickel Doped Co₃Se₄/Reduced Graphene Oxide Hybrids as Efficient Electrocatalysts for Oxygen Evolution Reaction

Wenlong Ye^a, Yanan Zhang^a, Jinchen Fan^{a,b}*, Penghui Shi^{a,b}, Yulin Min^{a,b} and Qunjie Xu^{a,b}*

^aShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric

Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.

^bShanghai Institute of Pollution Control and Ecological Security, Shanghai 200090,

China

E-mail: jinchen.fan@shiep.edu.cn; xuqunjie@shiep.edu.cn

Figure S1. Energy Dispersive X-Ray Spectroscopy of Ni-Co₃Se₄/rGO.

Figure S2. XRD patterns of Co_3O_4/rGO and $Ni-Co_3O_4/rGO$.

Figure S3. Raman spectra for GO and Ni-Co₃Se₄/rGO.

Figure S4. Core-level XPS spectrum for O 1s.

Figure S5. (a) LSV curves for Ni-Co₃Se₄/rGO with different Ni doping contents, (b) the local enlarged LSV curves for Ni-Co₃Se₄/rGO with different Ni doping contents, and (c) Tafel plots for Ni-Co₃Se₄/rGO with different Ni doping contents.

Figure S6. CV curves for (a) Co_3Se_4 , (b) Ni- Co_3Se_4 , (c) Co_3Se_4 /rGO, and (d) Ni-

Co₃Se₄/rGO at different scan rates.

Figure S7. Plots of current density difference(Δj) at 1.15 V (*vs.* RHE) versus scan rate for calculation of double layer capacitance (Cdl).