Electronic supplementary information

Efficient Polysulfide Trapping in Lithium-Sulfur Batteries Using

Ultrathin and Flexible BaTiO₃/Graphene Oxide/Carbon Nanotube

Layers

Jing Wang^a, Zhe Shi^b, Yufeng Luo^a, Datao Wang^a, Hengcai Wu^a, Qunqing Li^{ac}, Shoushan Fan^{ac}, Ju Li^b, and Jiaping Wang^{*ac}

- a. Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China. E-mail: jpwang@tsinghua.edu.cn.
- b. Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- c. Frontier Science Center for Quantum Information, Beijing 100084, China.

Fig. S1 (a) TEM and (b) SEM images of a fBTO/GO@CNT layer. (c) Ba elemental mapping of (b).

Fig. S2 (a) Photograph and (b) TGA curve of a flexible CNT@S electrode

Fig. S3 Charge-discharge curves of the electrodes with the nfBTO/GO@CNT layer, fBTO/GO@CNT layer, and pristine separator in the (a) 10th, (b) 50th, and (c) 100th cycles.

Fig. S4 Cycling performance of (a) an electrode with the nfBTO/GO@CNT functional layer at 1 C and (b) a high-sulfur loading electrode with the nfBTO/GO@CNT functional layer at 0.2 C.

Fig. S5 (a) The equivalent circuit of the EIS tests. (b) The EIS rests of the cells with the nfBTO/GO@CNT and fBTO/GO@CNT layers after 100 cycles.

Fig. S6 CV profiles of electrodes with (a) a pristine separator, (b) an nfBTO/GO@CNT layer, and (c) a fBTO/GO@CNT layer at different scan rates

Fig. S7 Binding geometries and DFT calculation of binding energies of fBTO with Li_2S_n

Fig. S8 Photographs and SEM images of (a) fBTO/GO@CNT and (b) nfBTO/GO@CNT layers after 50 cycles at 0.2 C.

Functional interlayer	Sulfur loading	Rate (C)	Initial capacity	Areal capacity	References
	(mg cm ⁻²)		(mAh g ⁻¹)	(mAh cm ⁻²)	
Dipole-align ed BTO coated separator	3	0.1	1122.1	3.37	[1]
rGO/BTO@ CNF interlayer	4.616	0.1	917	4.23	[2]
CoSe ₂ /G functional separator	4.35	0.2	1098	4.78	[3]
CeO2@G modified separator	5.03	0.3	589	2.96	[4]
Gra-HsGDY	1.2	0.2	1267	1.52	[5]
WS@SS interlayer	2.4	0.1	1362	3.27	[6]
nfBTO/GO @CNT functional layer	5.49	0.1	937.4	5.15	This work

Table S1 Comparison of cycle performances of the sulfur electrodes with nfBTO/GO@CNT layer and data in the literature

References

[1] T. Yim, S. H. Han, N. H. Park, M.-S. Park, J. H. Lee, J. Shin, J. W. Choi, Y. Jung, Y. N.

Jo, J.-S. Yu, and K. J. Kim, Adv. Funct. Mater. 2016, 26, 7817-7823.

[2] S. Zhang, X. Qin, Y. Liu, L. Zhang, D. Liu, Y. Xia, H. Zhu, B. Li, and F. Kang, Adv.

Mater. Interfaces 2019, 6, 22, 1900984.

[3] H. Yuan, H. Peng, B. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J. Huang, and Q. Zhang, Adv. Energy Mater. 2019, 9, 1802768.

[4] P. Cheng, P. Guo, K. Sun, Y. Zhao, D. Liu, and D. He, *J. Mmebrane Sci.* 2021, 619, 118780.

[5] S. Kong, D. Cai, G. Li, X. Xu, S. Zhou, X. Ding, Y. Zhang, S. Yang, X. Zhou, H. Nie, S.

Huang, P. Peng, and Z. Yang, Nanoscale 2021, 13, 3817-3826.

[6] M. E. Pam, S. Huang, S. Fan, S. Geng, D. Kong, S. Chen, M. Ding, L. Guo, L. K. Ang,

and H. Y. Yang, Mater. Today Energy 2020, 16, 100380.