Supplementary Information

Effects of spin-phonon coupling on two-dimensional ferromagnetic

semiconductors: a case study of iron and ruthenium trihalides

Yinqiao Liu¹, Qinxi Liu¹, Ying Liu¹, Xue Jiang^{1,*}, Xiaoliang Zhang², Jijun Zhao¹

¹Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China ²Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

^{*}Corresponding author. E-mail: jiangx@dlut.edu.cn (Xue Jiang)

FIGURE S1. Effects of SPC on various phonon-related properties of monolayer CrI₃: (a) phonon dispersion curve; (b) lattice thermal conductivity; (c) mode dependent heat capacity; (d) scattering possibility; (e) phonon interaction strength; and (f) dependence of magnetic-exchange interaction parameters on lattice constant.

FIGURE S2. (Left) Phonon dispersion data of full reciprocal space. The small imaginary frequency of PM-FeBr₃ will disappear by enlarge the size of the supercell, e.g. from test1 to test2. (Right) Small imaginary frequency nearly unchanged the lattice thermal conductivity of PM-FeBr₃.

FIGURE S3. Effects of SPC on (a) mode dependent heat capacity, (b) production of group velocities, (c) scattering possibility, and (d) average phonon–phonon interaction strength for RuCl₃, RuBr₃, and RuI₃, respectively.

FIGURE S4. (a) Top view of MX₃ monolayers. Considered exchange paths are shown by red double arrows. Possible antiferromagnetic (AFM) magnetic configurations of MX₃ monolayers with: (b) Néel-AFM, (c) stripy-AFM, and (d) zigzag-AFM orderings.

FIGURE S5. Curie temperatures with or without lattice deformation, C is heat capacity.

	FeCl ₃	FeBr ₃	FeI ₃	RuCl ₃	RuBr ₃	RuI ₃	CrI ₃	VCl ₃	VBr ₃	VI ₃
$E_{\rm FM}$ – $E_{\rm PM}$ [eV]	-1.064	-1.024	-0.543	-0.195	-0.136	-0.045	-3.374	-1.265	-1.406	-1.509
$E_{\rm AFM} - E_{\rm FM}$ [eV]	-0.073	-0.058	-0.061	0.199	0.153	0.069	0.037	_	_	

TABLE S1. The difference in the total energy per unit cell between the FM, PM states $(E_{\text{FM}}-E_{\text{PM}})$ or FM, antiferromagnetic (AFM) states $(E_{\text{AFM}}-E_{\text{FM}})$, respectively.

Energy [eV]	FM	Néel-AFM	stripy-AFM	zigzag-AFM
CrI ₃	-31.838	-31.802	-31.801	-31.816
FeBr ₃	-29.906	-29.965	-29.971	-29.964
FeCl ₃	-33.289	-33.363	-33.359	-33.338
FeI ₃	-26.576	-26.637	-26.672	-26.666
RuBr ₃	-30.500	-30.347	-30.409	-30.449
RuCl ₃	-33.525	-33.326	-33.400	-33.435
RuI ₃	-28.196	-28.127	-28.136	-28.162

TABLE S2. The total energy per unit cell of AFM states.

	Μ [μΒ]	J1	J2	J3	M(strain =10%)	J1(strain =10%)	J2(strain =10%)	J3(strain =10%)
CrI3	3.02	0.590	0.080	0.213	3.05	0.692	0.053	0.178
FeBr ₃	3.72	-0.913	0.212	-0.130	3.74	-0.696	0.163	-0.107
FeCl ₃	3.80	-0.916	0.069	-0.141	3.82	-0.742	0.049	-0.116
FeI ₃	3.56	-1.091	0.285	-0.404	3.58	-0.756	0.193	-0.342
RuBr ₃	0.73	52.648	-5.263	-5.341	0.75	54.326	-5.727	-5.156
RuCl ₃	0.82	61.396	-7.271	-11.736	0.82	62.859	-8.427	-12.306
RuI ₃	0.67	23.928	1.489	4.541	0.69	31.742	0.467	3.450

TABLE S3. Magnetic moment M and exchange parameters J (in meV).