Supplementary Material for

High Potassium Ion Storage Capacity with Long Cycling Stability Enables by Sustainable Oxygen-Rich Carbon Nanosheets

Xuechun Li, Huanlei Wang*, Wenzhe Zhang, Wenrui Wei, Ranxia Liao, Jing Shi,

Minghua Huang, Shuai Liu*, Zhicheng Shi

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

*Corresponding author.

E-mail address: huanleiwang@gmail.com; liushuai6980@ouc.edu.cn

Fig. S1 XPS (a) C 1s spectrum and (b) S 2p spectrum for FOC.

Fig. S2 (a) CV curves of FOC at 0.1 mV s⁻¹. (b) CV curves of FOC at different scan rates from 0.2 to 1 mV s⁻¹. (c) log(i) response plotted vs. log(v) of FOC at peak voltages. (d) Normalized contribution ratios of capacitive- and diffusion-controlled processes for FOC.

Fig. S3 (a) Galvanostatic charge-discharge curves of FOC at 0.05 A g^{-1} and (b) at different current densities. (c) Galvanostatic charge-discharge curves of FOCN at different current densities.

Fig. S4 (a) SEM image of FOCN-5. (b) SEM image of FOCN-15.

Fig. S5 (a) Nitrogen adsorption-desorption isotherms, and (b) the corresponding pore size distributions of FOCN-5 and FOCN-15.

Fig. S6 Rate capability of FOC, FOCN, FOCN-5 and FOCN-15 at current densities from 0.05 to 10 A g^{-1} .

Fig. S7 Nyquist plots of the FOC sample at different cycles at 2 A g⁻¹.

Fig. S8 Long-term cycle performance and the corresponding Coulombic efficiency of the FOCN anode at 10 A g⁻¹.

Fig. S9 GITT potential profiles for FOC and FOCN.

Fig. S10 Galvanostatic charge-discharge profiles for NPC at different current densities (at cycle 5).

(NPC was synthesized by one-step carbonization/activation techniques using methyl cellulose as the precursor, sodium bicarbonate as salt template, urea as N-doping precursor, and potassium hydroxide as activating agent.¹)

Sample	$d_{(002)}$ L_a		L _a L _c		L /L S _{BET} ^a	S _{mic}	Pore volume ^b (%)		XPS composition (wt%)		
	(nm)	(nm)	(nm)	1D/1G	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$V_{<2 \text{ nm}}$	$V_{2-50 \text{ nm}}$	С	Ο	S
FOC	0.376	7.37	1.56	1.70	661	382	86.98	13.02	82.39	17.18	0.42
FOCN	0.379	6.58	1.44	1.90	558	119	18.98	81.02	88.55	9.86	1.59

Table S1. Physical parameters for FOC and FOCN.

^a Surface area was calculated with BET method.

^b The pore volume was determined by DFT method.

Sample -	Peak position (eV)					Relative peak areas (%)				
	C=C	C-C	C-O/C-S	C=O	СООН	C=C	C-C	C-O/C-S	С=О	СООН
FOCN	284.4	285.1	285.9	286.9	289.2	47.91	30.79	7.93	5.09	8.27
FOC	284.4	285.0	286.1	286.9	288.6	59.72	20.98	8.29	1.68	9.34

Table S2. Binding energy and relative peak areas of C species evaluated by XPS.

Sample -	F	Peak positi	on (eV)	Relative content (%)		
	O-S	С=О	С-О-С/С-ОН	O-S	C=O	С-О-С/С-ОН
FOCN	531.3	532.5	533.9	6.55	47.24	46.20
FOC	531.3	532.4	533.8	5.69	42.92	51.39

Table S3. Binding energy and relative peak areas of O species evaluated by XPS.

Sample -		Peak posi	tion (eV)		Relative content (%)			
	S 2p _{3/2}	S 2p _{1/2}	C-SO _x -C		S 2p _{3/2}	S 2p _{1/2}	C-SO	O _x -C
FOCN	164.0	165.2	168.3	169.5	44.13	22.70	19.23	13.94
FOC	164.0	165.3	168.1	169.2	20.14	10.05	35.86	33.95

Table S4. Binding energy and relative peak areas of S species evaluated by XPS.

Table S5. Comparison of potassium storage performance between FOCN and other

reported carbonaceous electrodes.

		Cyc			
Materials	Rate capacity	Current density (A g ⁻¹)	Cycle number	Specific capacity (mAh g ⁻¹)	Reference
FOCN	392 mAh g ⁻¹ at 0.05 A g ⁻¹ 107 mAh g ⁻¹ at 10 A g ⁻¹	2	2500	301	This work
Sulfur/selenium/nitrogen co-doped hard carbon (SSHC)	252.5 mAh g ⁻¹ at 0.1 A g ⁻¹ 158.1 mAh g ⁻¹ at 3 A g ⁻¹	1	1100	143.5	2
N/O co-doped porous hard carbon nanobelts (NOCNBs)	468 mAh g ⁻¹ at 0.05 A g ⁻¹ 200 mAh g ⁻¹ at 3.2 A g ⁻¹	1	1600	277	3
N/P co-doped vertical graphene on CC (N, P-VG@CC)	335.6 mAh g ⁻¹ at 0.025 A g ⁻¹ 156.1 mAh g ⁻¹ at 2 A g ⁻¹	1	1000	142.4	4
Carbon dots@rGO (CDs@rGO)	309 mAh g ⁻¹ at 0.1 A g ⁻¹ 221 mAh g ⁻¹ at 0.5 A g ⁻¹	0.2	840	244	5
Edge-enriched N-doped porous carbon nanosheets (ENPCS)	276 mAh g ⁻¹ at 0.05 A g ⁻¹ 110 mAh g ⁻¹ at 4 A g ⁻¹	1	6000	252	6
Volcanic-like hard carbon (PNTCDA)	220.7 mAh g ⁻¹ at 0.1 A g ⁻¹ 103 mAh g ⁻¹ at 4 A g ⁻¹	2	4000	81	7
N/S dual-doped carbon (N, S-3DHPC)	380.5 mAh g ⁻¹ at 0.1 A g ⁻¹ 129.4 mAh g ⁻¹ at 10 A g ⁻¹	1	1000	249.5	8
Soybeans-derived hard carbon (SC-500)	175 mAh g ⁻¹ at 0.05 A g ⁻¹ 70 mAh g ⁻¹ at 0.8 A g ⁻¹	0.05	900	196	9

N-doped porous carbon (NHPC)	305.7 mAh g ⁻¹ at 0.05 A g ⁻¹ 102.6 mAh g ⁻¹ at 2 A g ⁻¹	1	1000	119.9	10
Oxygen-rich carbon nanosheets (CNSs)	252 mAh g ⁻¹ at 0.1 A g ⁻¹ 133 mAh g ⁻¹ at 10 A g ⁻¹	2	1300	147	11
Onion-like carbon (OLC)	179 mAh g ⁻¹ at 0.1 A g ⁻¹ 78 mAh g ⁻¹ at 10 A g ⁻¹	2	1000	111	12
3D nitrogen-doped framework carbon (3DNFAC)	309 mAh g ⁻¹ at 0.1 A g ⁻¹ 111 mAh g ⁻¹ at 10 A g ⁻¹	2	1000	137	13
Hierarchically porous thin carbon shells (S/N@C)	235 mAh g ⁻¹ at 0.1 A g ⁻¹ 64 mAh g ⁻¹ at 4 A g ⁻¹	2	900	65	14
S/O co-doped hard carbon (PCMs)	230 mAh g ⁻¹ at 0.05 A g ⁻¹ 158 mAh g ⁻¹ at 1 A g ⁻¹	1	2000	108.4	15

State	Relative content (%)					
State –	С=О	C-O-C/C-OH/S=O	O-S			
Pristine	47.24	46.20	6.55			
Fully discharged (cycle 1)	11.17	82.51	6.31			
Fully charged (cycle 1)	45.04	48.93	6.03			
Fully charged (cycle 2500)	78.41	12.74	8.85			

Table S6. Peak areas of O species evaluated by *ex-situ* XPS.

State			Relativ	ve content (%	(0)	
State	S 2p _{3/2}	S 2p _{1/2}	S ²⁻	KSO _X	Thiosulfate	/sulfate/-SO ₂ -
Fully charged (cycle 1)	8.88	4.18	8.30	16.99	45.53	16.11
Fully charged (cycle 2500)	13.17	6.60	8.94	15.12	41.49	14.68

Table S7. Peak areas of S species evaluated by *ex-situ* XPS.

 Table S8. Electrochemical performance of FOCN//NPC PIHC devices compared with

Anode materials	Cathode materials	Electrochemical performance	Reference
FOCN	NPC	193 Wh kg ⁻¹ at 494 W kg ⁻¹ 20 Wh kg ⁻¹ at 22324 W kg ⁻¹	This work
N-rich activated carbon (SEG)	N-rich activated carbon (SEG)	51 Wh kg ⁻¹ at 600 W kg ⁻¹ 25 Wh kg ⁻¹ at 9600 W kg ⁻¹	16
Graphite	Activated carbon	57.8 Wh kg ⁻¹ at 1422 W kg ⁻¹ 18.8 Wh kg ⁻¹ at 15887 W kg ⁻¹	17
U-Co ₂ P@rGO-14	Activated carbon	87 Wh kg ⁻¹ at 12 W kg ⁻¹ 10 Wh kg ⁻¹ at 4264.7 W kg ⁻¹	18
Ca _{0.5} Ti ₂ (PO ₄) ₃ @C (CTP@C)	Activated carbon	80 Wh kg ⁻¹ at 32 W kg ⁻¹ 34 Wh kg ⁻¹ at 5144 W kg ⁻¹	19
K ₂ Ti ₆ O ₁₃ (KTO)	N-doped nanoporous graphenic carbon (NGC)	58.2 Wh kg ⁻¹ at ~166 W kg ⁻¹ 13.2 Wh kg ⁻¹ at 7200 W kg ⁻¹	20
Hollow carbon (HC)	Boron-doped graphite (BG)	108 Wh kg ⁻¹ at 495 W kg ⁻¹ 20 Wh kg ⁻¹ at 6100 W kg ⁻¹	21
Nb ₂ O ₅ @C/rGO-50	MSP-20	76 Wh kg ⁻¹ at 80 W kg ⁻¹ 6 Wh kg ⁻¹ at 20800 W kg ⁻¹	22
TiO ₂ @CNT@C	Biomass-derived activated carbon (BAC)	81.2 Wh kg ⁻¹ at 126 W kg ⁻¹ 37.9 Wh kg ⁻¹ at 12400 W kg ⁻¹	23
V ₂ O ₅ -CNT	Activated carbon	38 Wh kg ⁻¹ at 140 W kg ⁻¹ 7.5 Wh kg ⁻¹ at 5000 W kg ⁻¹	24

previously reported PIHCs, SIHCs and LIHCs.

MWTOG	Activated carbon	64.2 Wh kg ⁻¹ at 56.3 W kg ⁻¹ 25.8 Wh kg ⁻¹ at 1357 W kg ⁻¹	25
Graphene-wrapped Li ₄ Ti ₅ O ₁₂ (LTO)	Activated carbon	50 Wh kg ⁻¹ at ~18 W kg ⁻¹ 15 Wh kg ⁻¹ at 2500 W kg ⁻¹	26
TiO ₂ /CNT	Activated carbon	59.6 Wh kg ⁻¹ at 120 W kg ⁻¹ 22.3 Wh kg ⁻¹ at 13900 W kg ⁻¹	27

Supporting References

- Y. P. Cui , W. Liu, Y. Lyu, Y. Zhang, H. L. Wang, Y. J. Liu and D. Li, *J. Mater. Chem. A*, 2018, 6, 18276-18285.
- Y. Liu, H. D. Dai, Y. K. An, L. J. Fu, Q. Y. An and Y. P. Wu, J. Mater. Chem. A, 2020, 8, 14993-15001.
- K. Zhang, Q. He, F. Y. Xiong, J. P. Zhou, Y. Zhao, L. Q. Mai and L. N. Zhang, Nano Energy, 2020, 77, 105018.
- W. D. Qiu, H. B. Xiao, Y. Li, X. H. Lu and Y. X. Tong, Small, 2019, 15, 1901285.
- E. Zhang, X. X. Jia, B. Wang, J. Wang, X. Z. Yu and B. G. Lu, *Adv. Sci.*, 2020, 7, 2000470.
- F. Xu, Y. X. Zhai, E. Zhang, Q. H. Liu, G. S. Jiang, X. S. Xu, Y. Q. Qiu, X. M. Liu, H. Q. Wang and S. Kaskel, *Angew. Chem. Int. Ed.*, 2020, 59, 2-10.
- Y. Liu, Q. Ru, Y. Q. Gao, Q. Y. An, F. M. Chen, Z. L. Shi, M. H. Zheng and Z. K. Pan, *Appl. Surf. Sci.*, 2020, **525**, 146563.
- B. B. Fan, J. X. Yan, A. P. Hu, Z. Liu, W. Z. Li, Y. H. Li, Y. L. Xu, Y. Zhang, Q. L. Tang, X. H. Chen and J. L. Liu, *Carbon*, 2020, 164, 1-11.
- L. Tao, L. Liu, R. F. Chang, H. B. He, P. Zhao and J. Liu, J. Power Sources, 2020, 463, 228172.
- C. L. Gao, Q. Wang, S. H. Luo, Z. Y. Wang, Y. H. Zhang, Y. G. Liu, A. M. Hao and R. Guo, *J. Power Sources*, 2019, 415, 165-171.
- J. T. Chen, B. J. Yang, H. J. Hou, H. X. Li, L. Liu, L. Zhang and X. B. Yan, *Adv. Energy Mater.*, 2019, 9, 1803894.
- J. T. Chen, B. J. Yang, H. X. Li, P. J. Ma, J. W. Lang and X. B. Yan, *J. Mater. Chem. A*, 2019, 7, 9247-9252.
- B. J. Yang, J. T. Chen, L. Y. Liu, P. J. Ma, B. Liu, J. W. Lang, Y. Tang and X. B. Yan, *Energy Storage Mater.*, 2019, 23, 522-529.
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. J. Zhu, Z. B. Liang, W. Meng, W. Aftab, W. H. Guo, H. Zhang, M. Yousaf, S. Gao, R. Q. Zou and Y. S. Zhao, *Adv. Mater.*, 2019, **31**, 1805430.

- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. J. Guo and H. Yang, *Adv. Energy Mater.*, 2018, 8, 1800171.
- Z. Chen, W. L. Li, J. Yang, J. X. Liao, C. Chen, Y. C. Song, S. A. Ali Shah, Z. Q. Xu and M. Q. Wu, *J. Electrochem. Soc.*, 2020, 167, 050506.
- X. Liu, G. A. Elia, B. S. Qin, H. Zhang, P. Ruschhaupt, S. Fang, A. Varzi and S. Passerini, *ACS Energy Lett.*, 2019, 4, 2675-2682.
- Y. X. Wang, Z. Y. Zhang, G. X. Wang, X. Y. Yang, Y. M. Sui, F. Du and B. Zou, Nanoscale Horiz., 2019, 4, 1394-1401.
- Z. Y. Zhang, M. L. Li, Y. Gao, Z. X. Wei, M. N. Zhang, C. Z. Wang, Y. Zeng, B. Zou, G. Chen and F. Du, *Adv. Funct. Mater.*, 2018, 28, 1802684.
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji and X. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 15542-15547.
- F. Yu, Z. C. Liu, R. W. Zhou, D. M. Tan, H. X. Wang and F. X. Wang, *Mater. Horiz.*, 2018, 5, 529-535.
- E. Lim, C. Jo, M. S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K. C. Roh, K. Kang, S. Yoon and J. Lee, *Adv. Funct. Mater.*, 2016, 26, 3711-3719.
- Y.-E. Zhu, L. P. Yang, J. Sheng, Y. N. Chen, H. C. Gu, J. P. Wei and Z. Zhou, *Adv. Energy Mater.*, 2017, 7, 1701222.
- Z. Chen, V. Augustyn, X. L. Jia, Q. F. Xiao, B. Dunn and Y. F. Lu, ACS Nano, 2012, 6, 4319-4327.
- Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, ACS Nano, 2017, 11, 2952-2960.
- H. Kim, K.-Y. Park, M.-Y. Cho, M.-H. Kim, J. Hong, S.-K. Jung, K. C. Roh and K. Kang, *ChemElectroChem*, 2014, 1, 125-130.
- Z. Chen, Y. Yuan, H. Zhou, X. Wang, Z. Gan, F. Wang and Y. Lu, *Adv. Mater.*, 2014, 26, 339-345.