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In the supplementary information, we firstly provided the detail energy mapping method to 

extract Heisenberg parameters from DFT calculations. Secondly, the spin wave theory with 

interactions solved by Hatree-Fock approximations was introduced. Afterwards, the electronic and 

magnetic structures of five candidates were discussed in more details. The impactions of Hubbard 

U on d-shell were also presented. Finally, we verified our candidates on the level of GGA and 

discussed the performances of LDA, GGA and hybrid functionals approaches.

1. Determination of magnetic parameters in anisotropic 

Heisenberg model

In this part, we give the details of energy mapping method for the evaluation on the parameters 

in Heisenberg model (eq. 1 in main text) based on noncolinear DFT calculations. 

Consider the case in which all spins point to x or y directions, the anisotropic terms of 

Heisenberg model vanish, leading to following energy expression:

𝐸𝑥(𝑦)
𝑖 = 𝐸𝑥(𝑦)

0 +
𝑆2

2 ∑
𝑑

𝐹𝑖(𝑑)𝐽𝑥(𝑦)(𝑑)                (𝑆1)

where  is the calculated total DFT energy of system converged to ith type of spin 𝐸𝑥(𝑦)
𝑖

configurations in which all spins point to ±x(y) direction.  count the 𝐹𝑖(𝑑) = 𝐹 𝑖
𝐹𝑀(𝑑) ‒ 𝐹 𝑖

𝐴𝐹𝑀(𝑑)

quantity difference between dth nearest neighbored (dNN) FM bonds and AFM bonds. FM bonds 

are bonds linking parallel spins pairs while AFM bonds are opposite. Apparently, eq. S1 can be 

uniquely determined with D+1 different magnetic configurations if we cutoff the exchange coupling 

at Dth NN. 

The energy expression of z-oriented spin configuration is:

𝐸𝑧
𝑖 ‒ 𝐸0 = 𝑁𝐴𝑧𝑆2 +

𝑆2

2 ∑
𝑑

𝐹𝑖(𝑑)𝐽𝑧(𝑑)                (𝑆2)

where N is the number of magnetic ions involved in calculations. Since we have already 

obtained  in eq. S1, this equation can also be uniquely solved using D+1 different magnetic 𝐸0



configuration. After some straight algebra, and noting that we have defined ，𝐽 = (𝐽𝑥 + 𝐽𝑦)/2

，we can get all parameters in anisotropic Heisenberg Hamiltonian.𝐵 = 𝐽𝑧 ‒ 𝐽

2. Hatree-Fock renormalized spin-wave

In this part we give the details of renormalized spin-wave solutions where interactions were 

approximately incorporated by Hatree-Fock method. To clearly describe the cases in which each 

cell consists of two or more magnetic ions, we re-express the Heisenberg Hamiltonian the eq. 1:

𝐻 = 𝑁{∑
𝑑𝛼𝛽

𝐽𝑑𝛼𝛽(𝑆 𝑧
0𝛼𝑆 𝑧

𝑑𝛽 +
1
2(𝑆 +

0𝛼𝑆 ‒
𝑑𝛽 + 𝑆 ‒

0𝛼𝑆 +
𝑑𝛽)) + ∑

𝑑𝛼𝛽

𝐵𝑑𝛼𝛽𝑆 𝑧
0𝛼𝑆 𝑧

𝑑𝛽 + 𝐴𝑧∑
𝛼

(𝑆 𝑧
0𝛼)2} + 𝐸0          (𝑆3)

where d labels the index of cell, and  label the different magnetic ions in each cell.  is the quantity 𝛼,𝛽 𝑁

of cells in consideration. The translation symmetry is implicitly involved in eq. S3.

With Dyson-Maleev operator substitution discussed in main text, eq. S3 was reduced to the 

summation of two parts: H=H0+H1+const., where H0 describes the free part of spin wave with 

quadratic expression:

𝐻0 =‒ 𝑁𝑆(∑
𝑑𝛼𝛽

(𝐽𝑑𝛼𝛽 + 𝐵𝑑𝛼𝛽)𝑛𝑑𝛽 ‒ 𝐽𝑑𝛼𝛽𝑏 †
0𝛼𝑏𝑑𝛽) ‒ 2𝑁𝐴𝑧𝑆∑

𝛾

𝑛0𝛾                (𝑆4)

while H1 describes the interactions between spin waves with quartic expression:

𝐻1 =
𝑁
2(∑

𝑑𝛼𝛽
(𝐽𝑑𝛼𝛽 + 𝐵𝑑𝛼𝛽)𝑛0𝛼𝑛𝑑𝛽 ‒ 𝐽𝑑𝛼𝛽𝑏 †

0𝛼𝑛0𝛼𝑏𝑑𝛽) + 𝑁𝐴𝑧∑
𝛾

𝑛 2
0𝛾                (𝑆5)

Within Fourier transformation , we obtain the free part of spin wave:
𝑏 †

𝑖𝛼 =
1
𝑁∑

𝑘

𝑒
‒ 𝑖𝑘𝑅𝑖𝑏 †

𝑘𝛼

𝐻0 =‒ 𝑆∑
𝑘𝛼𝛽

(𝐽(0;𝛼𝛽) + 𝐵(0;𝛼𝛽))𝑛𝑘𝛼 ‒ 2𝐴𝑆∑
𝑘𝛼

𝑛𝑘𝛼 + 𝑆∑
𝑘𝛼𝛽

𝑏 †
𝑘𝛼𝐽(𝑘;𝛼𝛽)𝑏𝑘𝛽          (𝑆6)

where k labels the wave vector, and , .
𝐽(𝑞;𝛼𝛽) = ∑

𝑑

𝑒𝑖𝑞𝑑𝐽(𝑑;𝛼𝛽) 𝐵(𝑞;𝛼𝛽) = ∑
𝑑

𝑒𝑖𝑞𝑑𝐵(𝑑;𝛼𝛽)

Up to Hatree-Fock approximation, the quartic part H1 was approximated as:



𝐻1

=
1
𝑁∑

𝑘𝛾𝑘1
{𝐽(𝑘 ‒ 𝑘1;𝛾𝛾) + 𝐵(𝑘 ‒ 𝑘1;𝛾𝛾) ‒ 𝐽(𝑘1;𝛾𝛾) + 4𝐴 + ∑

𝛼

(𝐽(0;𝛼𝛾) + 𝐵(0;𝛼𝛾))}〈�̅�𝑘1〉𝑛𝑘𝛾 ‒
1
𝑁∑

𝑘𝛾
∑
𝑘1𝛼

〈�̅�𝑘1〉𝐽(𝑘;𝛼𝛾)𝑏 †
𝑘𝛼𝑏𝑘𝛾

+ ∑
𝑘𝛾

𝐴𝑛𝑘𝛾          (𝑆7)

here  is the average occupation number on  according to Bosons’ distribution: 〈�̅�𝑘1〉 𝑘1

 where  is the energy of spin wave and  is the inversed temperature. 〈�̅�𝑘1〉 = (𝑒
𝛽𝜀𝑘 ‒ 1) ‒ 1

𝜀𝑘 𝛽 = 1/𝜅𝑇

To further simplify the expression, we only consider the interactions between of Γ-wave and others, 

i.e. set  in eq. S7. Therefore:𝑘1 = 0

𝐻1

= 〈𝑛〉∑
𝑘𝛾

{𝐽(𝑘;𝛾𝛾) + 𝐵(𝑘;𝛾𝛾) ‒ 𝐽(0;𝛾𝛾) + 4𝐴 + ∑
𝛼

(𝐽(0;𝛼𝛾) + 𝐵(0;𝛼𝛾))}𝑛𝑘𝛾 ‒ 〈𝑛〉∑
𝑘𝛼𝛾

𝐽(𝑘;𝛼𝛾)𝑏 †
𝑘𝛼𝑏𝑘𝛾

+ ∑
𝑘𝛾

𝐴𝑛𝑘𝛾          (𝑆8)

here  is the average occupation of spin wave excitons over all k-points, governing by the Boson-〈𝑛〉

Einstein distribution:

〈𝑛〉 =
1
𝑁∑

𝑘

1

𝑒
𝛽𝜀𝑘 ‒ 1

                (𝑆9)

The summation is over irreducible Brillouin zone (iBZ). Since the total Hamiltonian  𝐻 = 𝐻0 + 𝐻1

is renomalized by the interacting term , it leads to the self-consistent problem and can be solved 𝐻1

via scanning the value of  to see if and where the solution exists.〈𝑛〉

3. Detail electronic and magnetic structures of candidates

3.1 CrI3

As shown in Fig. S1(a), Cr3+ ions are located at the center of octahedron formed by six I-, 

leading to the splitting of eg and t2g orbitals. The octahedron is only slightly deformed, and Cr-I-Cr 

bond angles turn out to be ~98° in our fully optimized structures. Therefore, there are considerable 



overlaps between eg orbitals of Cr3+ and pxy orbitals of I-, as demonstrated by the Projected density 

of states (PDOS) in Fig. S1(b). This kind of electronic configuration supports FM type super-

exchange mechanism between Cr3+. Considering one of the Cr3+- I-- Cr3+ local structure, one px and 

one py electron of I- hop to near two Cr3+ respectively, and they prefer the same spin orientation to 

reduce the onsite interactions i.e. the Hubbard interactions in p-shell of I ions. If the two Cr3+ have 

the same spin structure then exited structure will obey Hund’s rule thus also minimize the exchange 

energy of excited Cr3+, that is, ferromagnetic couplings between Cr ions are energetically favored 

from the 4nd order perturbation consideration. The lowest excited state can be formally represented 

as: Cr(t2g↑
3)(px-eg↑)I(px↓py↓)(py-eg↑)Cr(t2g↑

3), in which the p states of I- are spin-polarized with 

reversed spin-orientation comparing to Cr3+. This consideration is verified by the spin density in 

Fig. S1(a), where some down-spin densities on I- were presented while the spin densities on 

surrounding Cr3+ were up-orientated. Since the relativistic effects around heavy Te elements are 

very large, these spin-polarized states of Te are sufficiently important in the crystalline anisotropies 

of magnetism, which was also found in other study very recently.1, 2 

Fig. S1 (a) The spin density of CrI3, yellow and blue surfaces correspond to up- and down-spin density, respectively. 

(b) Projected density of states of CrI3. Blue and yellow shaded regions correspond to the DOS projected to pxy and 

t2g atomic orbitals. (c) Binder Cumulates vs. temperature obtained by QMC on 16x16 (red) and 32x32 (blue) sized 

CrI3 supercells. (d) Hartree-Fock renormalized spin-wave occupations and (e) spin-wave gap under each temperature 

for CrI3. The lightest area corresponds to the parameter space that can self-consistently solve the eq. S4-S9.



Fig. S1(d) shows the self-consistent solutions of occupation number under each temperature 

according to the renormalized spin-wave theory with Hatree-Fock approximations. At relatively 

high temperature region, there may be more than one solution, which is especially obvious in the 

temperature region around 34~45 K. This feature indicates the possibility of a sudden increasing of 

spin-wave occupations and an abrupt deduction of magnetic order, which is similar to the behavior 

of 1st order transition and founded in another study.3

Fig. S1(e) shows the evolution of spin-wave gap in the CrI3 up to Hatree-Fock approximation. 

The occupations  increase with temperature according to eq. S9, strengthening the interactions 〈𝑛〉

and reduce the energies of spin-wave excitons according to eq. S8. To see the effects of interactions 

on spin wave spectra, we divide eq. S8 into three parts vis. the relevant high order part , the 𝐻𝑎

relevant main part  and the irrelevant part :𝐻𝑏 𝐻𝑐

𝐻1 = 𝐻𝑎 + 𝐻𝑏 + 𝐻𝑐

𝐻𝑎 = 〈𝑛〉∑
𝑘𝛾

(𝐽(𝑘;𝛾𝛾) + 𝐵(𝑘;𝛾𝛾) ‒ 𝐽(0;𝛾𝛾) + 2𝐴)𝑛𝑘𝛾          (𝑆10)

𝐻𝑏 = 〈𝑛〉(∑
𝑘𝛾

{2𝐴 + ∑
𝛼

(𝐽(0;𝛼𝛾) + 𝐵(0;𝛼𝛾))}𝑛𝑘𝛾 ‒ ∑
𝑘𝛼𝛾

𝐽(𝑘;𝛼𝛾)𝑏 †
𝑘𝛼𝑏𝑘𝛾)          (𝑆11)

𝐻𝑐 = ∑
𝑘𝛾

𝐴𝑛𝑘𝛾          (𝑆12)

The irrelevant part  is constant and cannot contribute to the evolution of spin wave gap. Both 𝐻𝑐

the relevant parts  and  are proportional to the occupations . Since occupations  grow up 𝐻𝑎 𝐻𝑏 〈𝑛〉 〈𝑛〉

with temperature,  and  also grow up with temperature, and directly decide the evolution of spin 𝐻𝑎 𝐻𝑏

wave spectra and gap.

Form eq. S11, it is clear that  can be reformulated as  (  is the free part of 𝐻𝑏 𝐻𝑏 =‒ 〈𝑛〉𝐻0/𝑆 𝐻0

spin wave Hamiltonian defined in eq. S6) thus is on the magnitude of  and always lowers the spin 𝐻0

wave energies. And eq. S10 shows that  is on the magnitude of anisotropies and its effects on 𝐻𝑎

spin wave energies depends on the balances of anisotropies between single-ion (A terms) and 

exchange intra the magnetic sublattices (B terms).



For the case of CrI3, both exchange and single-ion anisotropies are out-of-plane preferred, and 

 is also to reduce the spin wave energies. Therefore, the spin wave gap presented in Fig. S1(e) is 𝐻𝑎

decreasing with temperature until the phase transition is reached.

3.2 TC determination on QMC

Fig. S1(c) shows the evolution of 4th order Binder cumulant (U4) difference between 16x16 

and 32x32 CrI3 systems. U4 is a representative quantity for correlation length. At low temperature, 

U4 of two systems all approach unit since the correlations are very small, but they are different 

leading to finite difference. In high temperature region the correlation lengths are small too, and the 

spins are randomized with standard Gaussian distribution corresponding to U4=1/3, and the 

difference is also finite. Only on the phase transition, correlation lengths become infinite in both 

systems, and U4 also become the same, and the difference vanishes. Therefore, we can locate the 

Tc as the cross point of red and blue lines in Fig.S1(c) of CrI3 at 49K.

3.3 CrBr3 and CrCl3

CrBr3 and CrCl3 have similar electronic and magnetic structures with CrI3. The octahedra 

crystal field lifts the degeneracies in d-shell and lead to eg and t2g orbitals, as shown in Fig. S2(b) 

and Fig. S3(b). However, the ion radius of Br- is smaller than I- and Cl- is smallest. Therefore, the 

overlapping between d-shell and p-shell is smaller in CrBr3, and further smaller in CrCl3, which are 

also revealed by the PDOS. Therefore, the quantity of excited states which cause the open p-shell 

is less in CrBr3 and CrCl3, and the reversed spin densities on Br and Cl are also less, as shown in 

Fig. S2(a) and Fig. S3(a). Hence, the super-exchanges in these two systems are weaker than CrI3, in 

agreement with the DFT mapping results presented in Table 1 in main text.



Fig. S2 (a) The spin density of CrBr3, yellow and blue surfaces correspond to up- and down-spin density, 

respectively. (b) Projected density of states of CrBr3. Blue and yellow shaded regions correspond to the DOS 

projected to pxy and t2g atomic orbitals. (c) Binder Cumulates vs. temperature obtained by QMC on 16x16 (red) and 

32x32 (blue) sized CrBr3 supercells. (d) Hartree-Fock renormalized spin-wave occupations and (e) spin-wave gap 

under each temperature for CrBr3. The lightest area corresponds to the parameter space that can self-consistently 

solve the eq. S4-S9. 

Fig. S3 (a) The spin density of CrCl3, yellow and blue surfaces correspond to up- and down-spin density, 

respectively. (b) Projected density of states of CrCl3. Blue and yellow shaded regions correspond to the DOS 

projected to pxy and t2g atomic orbitals. (c) Binder Cumulates vs. temperature obtained by QMC on 16x16 (red) and 



32x32 (blue) sized CrCl3 supercells. (d) Hartree-Fock renormalized spin-wave occupations and (e) spin-wave gap 

under each temperature for CrCl3. The lightest area corresponds to the parameter space that can self-consistently 

solve the eq. S4-S9. 

Fig. S2(d-e) and Fig. S3(d-e) show the self-consistent HF-SW occupation numbers and energy 

gaps under finite temperatures for CrBr3 and CrCl3, respectively. The evolutions presented in these 

two systems are similar as the CrI3 discussed before. Fig. S2(c) and Fig. S3(c) show the evolution 

of Binder cumulant differences along with temperature. We also located the Tc from the cross of 

U4, that show the Tc in CrBr3 and CrCl3 are 28K and 17K, respectively.

3.4 CuCl3

Fig. S4(a) and (b) show the spin densities and PDOS in CuCl3, respectively. In accordance 

with Hund’s rule, we found five eighth of d-electrons of Cu3+ occupies every d-orbitals with spin-

up states and the rest three spin-down electrons occupies t2g orbitals thus revealing spin-1 on Cu3+ 

in agreement with our calculated results in Table 1 in main text. After full optimization, Cu-Cl-Cu 

bond angles turn out to be ~96°, revealing that the d orbitals of Cu3+ can overlap with px and py 

orbital of Cl-. Therefore, the ferromagnetic preferred exchange coupling between Cu3+ can be well 

understood by the super-exchange mechanism, too, and the details are similar as the case of CrX3 

family. The only difference is that, since Cu3+ has over half-filed d-shell, the hopping px or py 

electrons from Cl- should have the opposite spin-orientation to them, leading the excited state: 

Cu[t2g↑
3eg↑

2t2g↓
3][px-eg↓] I[px↑py↑] [py-eg↓] Cu[t2g↑

3eg↑
2t2g↓

3]. Therefore, the final ground states will be 

incorporated by a part of spin-polarized Cl- and the local states on both Cu3+ and Cl- are in the same 

spin tunnel, as revealed by the spin-density in Fig. S4(a). 



Fig. S4 (a) The spin density of CuCl3, yellow and blue surfaces correspond to up- and down-spin density, 

respectively. (b) Projected density of states of CuCl3. Blue and yellow shaded regions correspond to the DOS 

projected to pxy and t2g atomic orbitals. (c) Binder Cumulates vs. temperature obtained by QMC on 16x16 (red) 

and 32x32 (blue) sized CuCl3 supercells. (d) Hartree-Fock renormalized spin-wave occupations and (e) spin-wave 

gap under each temperature for CuCl3. The lightest area corresponds to the parameter space that can self-consistently 

solve the eq. S4-S9. 

Fig. S4(d) shows the evolution of HF-SW occupation numbers with temperatures in CuCl3, 

and Fig. S4(e) shows the evolution of spin wave gaps. While temperature is boosted, the spin wave 

gap in CuCl3 is enlarged slightly. This can be understood by the behaviours of interactions encoded 

in eq. S8-S12. As shown in Table 1 in main text, the 2NN exchange anisotropies and single-ion 

anisotropies in CuCl3 are in-plane preferred, the Ha part of interactions (eq. S10) thus contributes to 

the enhancements of spin-wave energies near the Γ-point and enlarge the spin wave gap. On the 

other hand, the spin wave energy gap in CuCl3 itself is very tiny, the Hb part of interactions (eq. 

S11) becomes inessential around Γ-point. Therefore, the whole effects of interactions lead to the 

increasement of spin wave energy gap as presented in Fig. S4(e).

As the result, an approximately linear relation between occupation number and temperature 

was found, since the growth of occupation number <n> with temperature increasing is partly 

impeded by the increasing of spin wave energy gap. This linear relation was also found in the MT 



curve of CMC and QMC. Fig. S4(d) shows the evolution of 4th order Binder cumulant along with 

temperature, indicating Tc in CuCl3 is 74K.

Fig. S5 (a) Phonon spectra of CuCl3. (b) Formation energies of Cu-Cl binaries, each dot denotes the formation energy 

of one specific 2D structure that consists of Cu and Cl and the red star denotes the formation energy of CuCl3 

presented in this work.

For the sake of further insuring the dynamic and thermal stabilities of the new predicted CuCl3, 

we investigated the phonon vibrations and the formation energy hull of Cu-Cl binaries. The phonon 

spectra presented in Fig. S5a shows that all the phonon frequencies are above zero, indicating that 

the distortions in CuCl3 structure are energetically costing, and the structure is dynamically stable. 

Fig. S5b shows the formation energy of Cu-Cl binaries CuxCl1-x. Formation energy is defined 

as Eform=E(CuxCl1-x)-xE(Cu)-(1-x)E(Cl). E(CuxCl1-x) the DFT-energy of structure CuxCl1-x, E(Cu) 

the energy of FCC-Cu per atom and E(Cl) half the energy of Cl2 molecular. The initial 2D structures 

of each CuxCl1-x were obtained from C2DB4, and were full relaxed with the same criteria as 

described in main text. The formation energy of our candidate CuCl3 is represented by the red star 

that is close to the edge of formation energy hull (the green lines). Therefore, once the elements 

ratio is well controlled, the desired phase of CuCl3 should be achieved in synthetical experiments.

3.5 FeCl2

Fig. S6(a) and (b) show the spin densities and PDOS in FeCl2, respectively. FeCl2 has a similar 

structure with celebrated 2H-MoS2, the Fe2+ layer is capsulated by two Cl- layers which construct 

the triangular-prism crystal field. Therefore, the degeneracies in d-shell of FeCl2 were lifted and dz 

orbital has the lowest energy, as shown in Fig. S6(b). There are six electrons in the d-shell of Fe2+, 



and the exchange splitting in d-shell is very strong, signifying the applicability of Hund’s rule. Five 

of the d-electrons are in spin-up states and the rest one spin down electron occupies dz orbital. The 

Fe-Cl-Fe bond angle is shown to be 84.6°. The detail super-exchange process which introduces the 

ferromagnetic exchange interactions between Fe2+ is similar to the case of CuCl3, and the excited 

states with lowest energy has the electronic configurations: Fe[d↑
5 dz↓

1][px- d↓] Cl[px↑py↑] [py- d↓] 

Fe[d↑
5 dz↓

1]. Therefore, in the ground state of FeCl2, Cl- should have the same spin-orientation with 

Fe2+, as revealed by the spin densities in Fig. S6(a).

Fig. S6 (a) The spin density of FeCl2, yellow and blue surfaces correspond to up- and down-spin density, 

respectively. (b) Projected density of states of FeCl2. Blue and yellow shaded regions correspond to the DOS 

projected to pxy and t2g atomic orbitals. (c) Binder Cumulates vs. temperature obtained by QMC on 16x16 (red) and 

32x32 (blue) sized FeCl2 supercells. (d) Hartree-Fock renormalized spin-wave occupations and (e) spin-wave gap 

under each temperature for FeCl2. The lightest area corresponds to the parameter space that can self-consistently 

solve the eq. S4-S9.

Fig. S6(d) shows the evolution of spin-wave occupation numbers with temperatures and Fig. 

S6(e) shows the spin wave gaps in FeCl2. The thermal evolutions of spin waves in FeCl2 are close 

to the cases in CrX3 family. Fig. S6(d) shows the evolution of Binder cumulant of QMC, indicating 

Tc in FeCl2 is 931K.



Fig. S7 (a) Phonon spectra of FeCl2. (b) Formation energies of Fe-Cl binaries, each dot denotes the formation energy 

of one specific 2D structure that consists of Fe and Cl and the red star denotes the formation energy of FeCl2 

presented in this work

Fig. S7a shows the phonon spectra of FeCl2. It are clear that all the phonon vibrations in FeCl2 

are energetically costing, manifesting the dynamically stability of the FeCl2 structure presented here. 

Fig. S7b shows the formation energy of Fe-Cl binaries FexCl1-x, using the reference energy of 

FCC-Fe crystal Cl2 molecular. The initial 2D structures of each FexCl1-x were also obtained from 

C2DB4, and were full relaxed. The position of red star which represents the formation energy of our 

FeCl2 structure is close to the minima of the hull and touch the border, justifying the high 

possibilities of realization of this predicted structure in experiments.

4. The impactions of Hubbard U applied on d-states

To identify the effects of strong correlation interactions of d-states on the magnetic properties 

and verify the robustness of our main results presented in main text, we employed series LDA+U 

calculations with Ueff applied on the d-states of magnetic ions and the value of Ueff were set to 0 eV, 

1 eV and 2 eV for each candidate, which were thought to be physically reasonable.1, 2, 5-8

Table S1 shows the band gap of renormalized spin wave, which is the pre-requisite for 2D 

magnetic orders as discussed in main text. It was found that the spin wave band gaps descend along 

with the ascending of Ueff in CrX3 family and FeCl2, but behave oppositely in CuCl3. All cases 

present opposite spin wave band gaps until Ueff=2eV. Therefore, the conclusions that the five 



candidates present long-range ferromagnetic orders under finite temperatures were nicely preserved 

with the consideration of onsite Ueff.

Table S1. Energy gap in spin wave spectra (free from the interactions) with magnetic constants 
generated by LDA+Ueff DFT calculations.

ΔSW Ueff=0 Ueff=1 Ueff=2
CrI3 0.855 0.781 0.773
CrBr3 0.291 0.234 0.203
CrCl3 0.102 0.076 0.061
CuCl3 0.012 0.031 0.053
FeCl2 0.293 0.209 0.106

Table S2 shows the Tc of candidates estimated by spin wave theory. Note that Tc presented 

here are quantitatively different from the QMC results. As we have discussed in main text, spin 

wave theory only predicts phase transition coarsely. However, it is suitable to capture the qualitative 

trends of Tc and is sufficient for the discussions here. It shows that the Tc in the CrX3 and CuCl3 

candidates are positively related to the Ueff. And in FeCl2, the case is exactly the opposite. 

Nevertheless, until Ueff=2eV, the higher-lower order of Tc amongst all candidates never changes 

with the Ueff, and the conclusion that CuCl3 and FeCl2 are superior 2D FM semiconductors still 

holds nicely.

Table S2. Tc estimated by renormalized spin wave with magnetic constants generated by LDA+Ueff 
DFT calculations.

TcSW Ueff=0 Ueff=1 Ueff=2
CrI3 44 66 81
CrBr3 27 38 44
CrCl3 12 17 20
CuCl3 56 72 83
FeCl2 776 604 377

5. Results on GGA-level

To verify our results beyond LDA functionals, we re-calculated the electronic and magnetic 

structures based on the functionals of general gradient approximations with Perdew-Burke−Ernzerh 

form9, 10, and the key properties are listed in Table S3. Our GGA results for CrX3 family are in line 



with former studies11-13. And the promising high-Tc ferromagnetism in two new predicted CuCl3 

and FeCl2 preserved on GGA-level. The distinctions between LDA and GGA are numerical, and it 

is apparently that the predicted Tc on GGA-level are more overestimated than LDA for the three 

CrX3 systems which are experimentally known to have Tc = 45K, 28K, 17K.

Table S3. Magnetic parameters for the candidates from noncolinear DFT calculations on GGA-
level. S is the maximally possible net eigenvalues of Sz. J1~ J3 are the isotropic part of 1~3 NN 
exchange interactions. B are the anisotropic parts of exchange interactions. Az are the single-ion 
magnetic anisotropies. All energy units are meV. TcSW (in kelvin) is the Curie temperature predicted 
by Hatree-Fock spin wave theory.

S J1 (B1) J2 (B2) J3 (B3) Az TcSW

CrI3 1.5 -2.87(-0.13) -0.63(0.02) 0.17(0.00) -0.21 84
CrBr3 1.5 -2.61(-0.03) -0.38(0.00) 0.15(0.00) -0.05 50
CrCl3 1.5 -1.89(-0.01) -0.22(0.00) 0.14(0.00) -0.01 20
CuCl3 1.0 -13.97(-0.02) -1.40(0.00) 0.24(0.00) 0.00 83
FeCl2 2.0 -17.03(-0.02) -0.21(-0.01) 0.04(0.03) -0.06 976

For the experimentally known CrX3 family, the magnetic properties on hybrid functionals 

levels have been reported in former study11, where the strengths of magnetic couplings and 

anisotropies are either stronger or comparable to the GGA-level. Therefore, we can expect that the 

Tc estimated on hybrid functionals levels will also significantly higher than experimental 

observations, at least for the CrX3 family.
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