Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Cerium-doped bimetal organic framework as a superhigh capacity cathode for rechargeable alkaline batteries[†]

Junpeng Li,^{ab} Guobang Zhao,^a Hongyang Zhao,^c Ningning Zhao,^a Miao Wang,^d Leilei Lu,^a Nailiang Liu,^a Chunjie Ma,^e Qian Zhang^{*ab} and Yaping Du^{*b}

^{a.} J. Li, G. Zhao, N. Zhao, Leilei Lu and N. Liu

Department of Applied Chemistry, Xi'an University of Technology.

Xi'an, Shaanxi 710048, China.

Prof. Q. Zhang

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry,

Xi'an University of Technology.

Xi'an, Shaanxi 710048, China.

E-mail: qzh@xaut.edu.cn (Q. Zhang)

J. Li and Q. Zhang are also visiting scholars at Rare Earth Center (see below)

^{b.} Prof. Y. Du

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University.

Tianjin 300350, China.

E-mail: ypdu@nankai.edu.cn (Y. Du)

^{c.} H. Zhao

Frontier Institute of Science and Technology, Xi'an Jiaotong University.

Xi'an, Shaanxi 710054, China.

^{d.} M. Wang

Shaanxi Research Institute of Textile Accessories

Xianyang, 712000, China.

^{e.} C. Ma

Shaanxi J&R Optimum Energy Co., Ltd.

Qingyang Building, Tsinghua Science Park, High-Tech Industries Development Zone, Xi'an 710075,

P. R. China.

† Electronic supplementary information (ESI) available. See DOI: xxxxx

Figure. S1 Crystal structure of NiCo-MOF

Figure S2. (a) CV curves of NiCo-MOF and (b) 0.1%, (c)0.5%, (d) 1%, (e) 5% and (f) 10% Ce doping NiCo-MOF. Scan rates ranging from 5 mV s⁻¹ to 50 mV s⁻¹.

Figure S3. Charge and discharge profiles of (a) NiCo-MOF, (b) 0.1% Ce doping NiCo-MOF, (c) 0.5% Ce doping NiCo-MOF, (d) 1% Ce doping NiCo-MOF, (e) 5% Ce doping NiCo-MOF and (f) 10% Ce doping NiCo-MOF at current densities of 2 A g⁻¹, 6 A g⁻¹, 10A g⁻¹, 14 A g⁻¹, 18 A g⁻¹ and 20 A g⁻¹.

Active materials	*Potential vs. SCE at 2 A g ⁻¹ (V)	Capacity	Capacity			
		at 2 A g ⁻¹	at 20 A g ⁻	Rate capacity retention		
			1			
NiCo-MOF	0.139	215	185	86%		
NiCo-MOF-0.1%	0.236	230	188	82%		
NiCo-MOF-0.5%	0.237	241	191	79%		
NiCo-MOF-1%	0.244	286	265	93%		
NiCo-MOF-5%	0.257	268	165	62%		
NiCo-MOF-10%	0.243	195	120	62%		
* Discharge potential at 50% discharge capacity						

Table S1. Potential and capacity performance

Discharge capacity of NiCo-MOF and NiCo-MOFs with various Ce doping at current densities from 2 A g^{-1} to 20 A g^{-1} was shown in Figure S3. The data in Table S1 were obtained from Figure S3, indicating Ce benefited discharge voltage with increasing doping amount. NiCo-MOF with 1% Ce doping performed higher capacity and rate capacity retention (93% from 2 A g^{-1} to 20 A g^{-1}). Obviously NiCo-MOF with 1% Ce doping outperforms others.

Figure S4. Electrochemical performance of Fe_2O_3 anode. (a) CV plots at scan rates from 5 mV s⁻¹ to 50 mV s⁻¹. (b) Charge and discharge curves from 0 V to -1.2 V at current densities of 0.5 A g⁻¹, 1 A g⁻¹ and 2 A g⁻¹.

CV curves at scan rates of 5 mV s⁻¹, 10 mV s⁻¹, 30mV s⁻¹ and 50 mV s⁻¹ were available in Figure S4(a). The charge and discharge profiles in Figure S4(b) indicate the capacity was 72 mAh g⁻¹, 56 mAh g⁻¹ and 20 mAh g⁻¹, at 0.5 A g⁻¹, 1 A g⁻¹ and 2 A g⁻¹, respectively. According to a previous report the charge-discharge mechanism is proposed as follows:¹

 Fe_2O_3 anode was activated, $Fe_2O_3 + H_2O \longrightarrow 2FeOOH$ (1)

Discharge process: $FeOOH + H_2O + e^- \longrightarrow Fe(OH)_2 + OH^-$ (2)

Charge process: $Fe(OH)_2 + OH^- \longrightarrow FeOOH + H_2O + e^-$ (3)

Cathada	Anada	Energy density	Power density	Dafaranaa
Cathode	Alloue	(Wh kg ⁻¹)	(kW kg ⁻¹)	Reference
NiCo-MOF-1%	Fe ₂ O ₃	150	0.78	This work
NiCo-MOF-1%	Fe ₂ O ₃	102	3.75	This work
NiCo ₂ O ₄	Bi	85.8	1.0	2
Co-doped Ni(OH) ₂	Zn	148	1.7	3
LiMn ₂ O ₄	LiTi ₂ (PO ₄) ₃	60	0.1	4
$LiNi_{0.5}Mn_{1.5}O_4$	Mo_6S_8	126	N/A	5
Ni/NiO	Bi/Carbon	105	N/A	6
Mn doping Ni(OH) ₂	Active carbon/RGO	51.5	0.4	7
Co-Cd selenide	Fe	57.6	10.9	8
Ni(OH) ₂	Fe ₂ O ₃	100.7	0.287	9
Ni(OH) ₂	Active carbon	35.7	0.49	10

Table. S2 Performance comparison of the aqueous batteries with NiCo-MOF-1%/Fe₂O₃ battery

The energy density (*E*) and power density (*P*) based on active materials of cathode and anodes electrodes were calculated by Eq (1).¹¹ The full cell exhibited a high energy

density of 150 Wh kg⁻¹ at the lowest power density of 0.78 kW kg⁻¹, while it can hold 102 Wh kg⁻¹ at 3.75 kW kg⁻¹.

$$E = \int_{0}^{t} \frac{I\Delta U}{m} dt \qquad P = \frac{1}{t} \int_{0}^{t} \frac{I\Delta U}{m} dt \qquad (1)$$

Where I is the constant discharge current, t is discharge time, ΔU is discharge voltage range, m is the mass of active materials on cathode and anode electrodes.

References:

- K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou and L. Mai, *Nat. Commun.*, 2017, 8, 14264.
- Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu, X. Lu and Y. Tong, *Adv. Mater.*, 2016, 28, 9188.
- C. Xu, J. Liao, C. Yang, R. Wang, D. Wu, P. Zou, Z. Lin, B. Li, F. Kang and C. Wong, *Nano Energy*, 2016, **30**, 900.
- 4. J. Y. Luo and Y. Y. Xia, Adv. Funct. Mater., 2007, 17, 3877.
- 5. F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun and C. Wang, *Adv. Energy Mater.*, 2017, 7, 1600922.
- Y. Zeng, Z. Lin, Z. Wang, M. Wu, Y. Tong and X. Lu, *Adv. Mater.*, 2018, 30, 1707290.
- L. Ye, Y. Zhou, Z. Bao, Y. Zhao, Y. Zou, L. Zhao and Q. Jiang, *J. Mater. Chem. A*, 2018, 6, 19020.
- 8. Z. Zhai, K. Huang and X. Wu, *Nano Energy*, 2018, 47, 89.
- J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H. J. Fan and Z. X. Shen, *Nano Lett.*, 2014, 14, 7180.
- H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong and G. Yang, Nat. Commun., 2013, 4, 1.
- H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li, R. Che, Z. Lyu, J. Xiong, L. Yang and X. Wang, *Energy Environ. Sci.*, 2016, 9, 2053.