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Results and discussion (Supplementary Material)

Morphology of SGAgNW-coated PET film. Fig. S8 shows the snapshot images of the AgNW conducting thin films on PET that were 
connected with copper electrodes (Dimension: 7 cm × 9 cm) with a high optical transparency. The film transparency is slightly 
darker with higher AgNW content, whereas the university emblem located behind the film is clearly visible.

The coating thickness was estimated to be one or two wire sizes using cross-sectional TEM images and EDS mapping of Pt and Ag 
(Fig. S9). A total of 40–50 nm of AgNW was coated on the PET film—except for the Pt coating layer—for high-resolution TEM 
measurements; the nanowires overlapped.

Heating performance: Temperature distribution. Fig. S10 shows the time-dependent temperature profiles of the SGAgNW-
based transparent thin-film heater on the PET film with respect to the applied voltage. A constant DC bias voltage was applied to 
the two ends of the electrode; the temperature distribution was investigated using temperature probes. The TE film heater 
exhibits a heating property proportional to the applied voltage. In addition, a fast response time of less than 3 min was observed 
to achieve the saturated temperature (0.8 Ts) under all conditions while maintaining a stable temperature. The heat generation 
reached 34.5 °C, 46.0 °C, and 64.3 °C under the application of 3 V, 5 V, and 7 V, respectively; This could then increase to 94.5 °C 
when a DC voltage of 10 V was applied. This verifies that the present film heater can achieve a well-controlled heating property 
controlled by the electrical voltage. According to Joule heating, the following equation can determine the electro-to-thermal 
power, where I denotes the electric current flowing through a conductor, V represents the applied voltage, and R represents the 
electrical resistance of the heater 1, 2. As described in equation (3), a lower electrical resistance can generate a better heating 
performance.

                                                                        ,                                                                                     (3)
𝑃= 𝐼𝑉=

𝑉2

𝑅

Thermal stability: Heating and cooling cycles. The reliability and thermal stability of the transparent thin-film heaters were 
evaluated using heating and cooling cycles. The temperature distribution was investigated under five repeated cycles for five 
times with an operating time of 20 min (Fig. S11). Considering the return time to reach the initial state, the cooling interval was 
set to 20 min at 5 V, and the turn-off time was set to 40 min at 7 V. The temperature profiles were maintained at a maximum 
steady-state temperature similar to the initial saturated temperature. The heating and cooling rates were measured by plotting 
the derivative of the temperature versus time. As shown in the slope graph, the heating performance appears identically during 
the test, which confirms that the AgNW-coated heaters on the PET film can repetitive operation with superior thermal stability 
at a low input voltage below 10 V.
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Figure S11.
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Table S1.
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Table S3.

 α-terpineol Water Methanol 
Molecular structure OH

 
O

H H  H3C OH  

Viscosity (at 20°C) [mPa.s] 67 1.001 0.594 
Solubility in water [g/L] 2.42 - miscible 
Boiling point [°C] 220 99.98 64.7 
Vapor pressure (at 25°C) [kPa] 0.0037 3.169 13.02 
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