Electronic Supplementary Information

Synthesis of nitrogen-doped reduced graphene oxide/cobaltzinc ferrites composite aerogels with superior compression recovery and electromagnetic wave absorption performance

Ruiwen Shu^{a, b, c*}, Jiabin Zhang^b, Yue Wu^b, Zongli Wan^b and Xiaohui Li^b

^aState Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, People's Republic of China. E-mail: rwshu@aust.edu.cn

^bSchool of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China

^cInstitute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, 241003, People's Republic of China

Experimental section

Materials

Graphite oxide was provided by Suzhou TANFENG Graphene Tech Co., Ltd (Suzhou, China). Cobalt chloride hexahydrate (CoCl₂·6H₂O), zinc chloride (ZnCl₂), ferric chloride hexahydrate (FeCl₃·6H₂O), sodium acetate (NaAc), ethylenediamine (EDA), ethylene glycol (EG), polyethylene glycol (PEG, $M_w = 6000 \text{ g} \cdot \text{mol}^{-1}$) and anhydrous ethanol (C₂H₅OH) were commercially available from Adamas-beta®. All the chemical reagents were analytical grade and used without further purification. Deionized water was produced in the laboratory (electrical resistivity ~ 18.2 MQ·cm).

Preparation of cobalt-zinc ferrite (Co_{0.5}Zn_{0.5}Fe₂O₄) microspheres

 $Co_{0.5}Zn_{0.5}Fe_2O_4$ microspheres were prepared by a simple solvothermal route. Firstly, 1.08 g (4 mmol) FeCl₃·6H₂O, 0.24 g (1 mmol) CoCl₂·6H₂O and 0.21 g (1 mmol) ZnCl₂ were completely dissolved into 60 mL of EG by vigorous stirring. Then, 5.4 g of NaAc and 1.5 g PEG were fully dissolved into the mixture solution under vigorous stirring, respectively. Next, the homogeneous solution was poured into a Teflon-lined stainlesssteel autoclave and reacted at 200 °C for 8 h. Afterward, the obtained products were collected by magnetic separation, and then purified by repeated washing with deionized water and anhydrous ethanol for several times, and dried at 55 °C for 24 h in a vacuum oven.

Preparation of nitrogen-doped reduced graphene oxide/cobalt-zinc ferrite (NRGO/Co_{0.5}Zn_{0.5}Fe₂O₄) composite aerogels

 $NRGO/Co_{0.5}Zn_{0.5}Fe_2O_4$ composite aerogels were synthesized by a facile hydrothermal method. Typically, aqueous graphene oxide (GO) dispersions (3.0 mg/mL) were firstly

obtained by ultrasonication of 90 mg of graphite oxide in 30 mL of deionized water for 1 h and further vigorously stirring for 30 min. Then, 30 mg of $Co_{0.5}Zn_{0.5}Fe_2O_4$ powders were completely dispersed into aqueous GO dispersions by ultrasonication for 30 min and vigorous stirring for another 30 min, respectively. Next, a certain amount of EDA was injected into the mixture dispersions and vigorously stirred for 30 min. Afterward, the reaction mixtures were poured into a Teflon-lined stainless-steel autoclave and reacted at 120 °C for 12 h. Finally, the as-prepared NRGO/Co_{0.5}Zn_{0.5}Fe₂O₄ composite hydrogels were dialyzed in a 10% (v/v) C₂H₅OH/H₂O solution for 48 h and then lyophilized at -50 °C for 48 h to obtain NRGO/Co_{0.5}Zn_{0.5}Fe₂O₄ composite aerogels.

Characterization

Crystalline phase structure was characterized by X-ray diffraction (XRD, LabX XRD-6000, Japan) with Cu-K α radiation ($\lambda = 0.154$ nm) in the scattering range (2 θ) of 10– 80° with a scanning rate of 2 °/min. Fourier transform infrared (FT-IR) spectra were recorded in the wavenumber range of 500–4000 cm⁻¹ using a Nicolet 380 spectrometer (Thermoscientific, USA). Raman spectra were acquired at room temperature by using a laser confocal Raman spectrometer (Renishaw-2000, UK) in the range of 250–2500 cm⁻¹ with an excitation wavelength of 532 nm. Surface chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI, USA). The micromorphology was observed with a field emission scanning electron microscopy (FESEM, Hitachi-Su8020, Japan) equipped with the energy dispersive Xray spectrum (EDS) device, and field emission transmission electron microscopy (FETEM, FEI-TF20, USA).

Electromagnetic parameters including the relative complex permittivity ($\varepsilon_r = \varepsilon'$ $j\varepsilon''$) and permeability ($\mu_r = \mu' - j\mu''$) were measured by a vector network analyzer (VNA, AV3629D, China) using the coaxial-line method in the frequency range of 2.0–18.0 GHz. Before being tested, the as-prepared composite aerogels were homogeneously mixed with paraffin wax (which was transparent to the electromagnetic waves) in different filler contents (10.0 wt.%, 15.0 wt.% and 20.0 wt.%) and then pressed into toroidal-shaped ring with outer diameter of 7.0 mm, inner diameter of 3.04 mm and thickness of 2.0 mm. The electrical conductivity was measured by a four-point probe method (Suzhoujingge electronics Co., Ltd, ST2722-SZ, China).

The electromagnetic wave (EMW) absorption performance of absorbers was evaluated by the reflection loss (RL), which could be calculated by the following equations according to the transmission line theory:¹⁻³

$$RL(dB) = 20 \lg \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right|$$
 (S1)

$$Z_{\rm in} = Z_0 \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}} \tanh\left[j\left(\frac{2\pi fd}{c}\right)\sqrt{\mu_{\rm r}\varepsilon_{\rm r}}\right]$$
(S2)

Herein Z_{in} is the input impedance of absorber, Z_0 is the impedance of free space, ε_r is the relative complex permittivity, μ_r is the relative complex permeability, d is the thickness of the absorber, c is the velocity of light in free space and f is the frequency. Generally, the EMW absorbers with $RL \leq -10.0$ dB were considered to be suitable for practical applications.¹⁻³

Fig. S1 XRD patterns of the samples of S1–S4.

Table S1 Typical physical parameters of the samples of S1–S4.

Samples	Bottom radius (cm)	Height (cm)	Volume (cm ³)	Weight (g)	Density (g·cm ⁻³)
S 1	0.90	2.30	5.85	0.0856	0.0146
S2	1.00	2.10	6.59	0.0863	0.0131
S 3	0.95	2.50	7.08	0.0859	0.0121
S4	1.00	2.30	7.22	0.0898	0.0124

Fig. S2 Typical digital images of S3 before, during and after the compression test.

Fig. S3 SEM image: (a); EDS mapping images: C (b), O (c), Fe (d), Co (e) and Zn (f); EDS pattern: (g); Low-resolution TEM image: (h); High-resolution TEM image: (i) of S1.

Fig. S4 SEM image: (a); EDS mapping images: C (b), N (c), O (d), Fe (e), Co (f) and Zn (g); EDS pattern: (h); Low-resolution TEM image: (i); High-resolution TEM image: (j) of S2.

Fig. S5 SEM image: (a); EDS mapping images: C (b), N (c), O (d), Fe (e), Co (f) and Zn (g); EDS pattern: (h); Low-resolution TEM image: (i); High-resolution TEM image: (j) of S4.

Fig. S6 $RL \sim f$ curves: 10.0 wt.% (a), 15.0 wt.% (b) and 20.0 wt.% (c); $|RL_{min}| \sim \phi_w$ curve of S3 (d).

Fig. S7 $C_0 \sim f$ curves of the samples of S1–S4.

Notes and references

- 1 Z. C. Wu, Z. Q. Yang, K. Pei, X. Qian, C. Jin and R. C. Che, *Nanoscale*, 2020, **12**, 10149-10157.
- 2 X. B. Xie, C. Ni, Z. H. Lin, D. Wu, X. Q. Sun, Y. P. Zhang, B. Wang and W. Du, *Chem. Eng. J.*, 2020, **396**, 125205.
- 3 R. W. Shu, J. B. Zhang, C. L. Guo, Y. Wu, Z. L. Wan, J. J. Shi, Y. Liu and M. D. Zheng, *Chem. Eng. J.*, 2020, **384**,123266.