Supporting Information

Stable Li-ion storage in Ge/N-doped Carbon Microspheres Anodes

Lijing Han, ^{a, b} Jing Tang, ^b Rong Yang,^a Qiaohua Wei,^{a, b*} Mingdeng Wei ^{a*}

^a Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China

^b Ministry of Education Key Laboratory for Analytical Science of Food Safety and biology, Fujian Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou, Fujian 350002, China

*Corresponding authors.

E-mail addresses:

wei-mingdeng@fzu.edu.cn (Mingdeng Wei);

qhw76@fzu.edu.cn (Qiaohua Wei)

Fig. S1 FTIR spectra of the samples.

Fig. S2 XRD patterns of GeO_2 -EDA and GeO_2 -AEEA precursors.

Fig. S3 Thermogravimetric analysis (TGA) of Ge/NC-A and Ge/NC-E in air at the heating rate of 10 $^{\circ}$ C min⁻¹.

Fig. S4 (a) Typical XPS survey spectrum, and (b) High-resolution N 1s XPS spectrum of Ge/NC-A.

Fig. S5 (a, b) SEM images, (c-d) TEM images and HRTEM image of the Ge/NC-E microspheres, and (e) Elemental mapping images of Ge, C and N.

Fig. S6 N_2 adsorption-desorption isotherms and pore size distributions from the

adsorption branch through the BJH method of (a, b) Ge/NC-A and (c, d) Ge/NC-E.

Fig. S7 CV curves at a scan rate of 0.2 mV s⁻¹ for Ge/NC-E and pure Ge.

Fig. S8 Long-term cycling performance at a current density of 5 A g^{-1} for Ge/NC-A.

Fig. S9 CV curves of the Ge/NC-E and pure Ge anode at various scan rates from 0.5 to 10 mV s^{-1} .

Fig. S10 The SEM images of Ge/NC-A anode (a) before and (b) after cycling.

Fig. S11 Electrochemical performances of LiFePO₄ cathode in half-cell: (a) dischargecharge curves, (b) cycle life at current density of 0.5 C and (c) rate performance (1 C = 170 mA h g⁻¹).

Table S1. Comparison of electrochemical properties of Ge-C anodes.

	Cycle stability			Ref.
Anode	Current	After n th	Charge	-
	Density	cycle	Capacity	
	(mA g ⁻¹)		(mA h g ⁻¹)	
3DOP Ge@N-C	1	200	1145	<i>Adv. Funct.</i> <i>Mater.</i> 2020 , 30, 2000373.
Ge@NC	1.6	1000	917	<i>Chem. Eng. J.</i> 2019 360 1301
	8	400	806	_01,200,1201.
Ge⊂C spheres	1.6	860	980	ACS Nano 2019 , 13, 9511.
Ge–C framework	0.1	50	833.6	<i>Adv. Energy</i> <i>Mater</i> 2019 , 9, 1900081.
	1	3000	618.3	
Ge/OMC-N-S	2	1000	641	<i>Electrochim. Acta</i> 2019 , 318, 737.
Ge@G@TiO2 NFs	0.1	100	1050	<i>Adv. Funct.</i> <i>Mater.</i> 2016 , 26, 1104.
Ge@C	0.5	150	878.1	<i>Chem. Eng. J.</i> 2017 , 322, 188.
H-Ge@NC	1	300	1067	<i>J.Electroanal.</i> <i>Chem.</i> 2019 , 832, 182.
Ge/NC	0.2	200	1113.2	This work
	1	1000	965.0	
	5	500	823.1	

Sample (after cycling)	Re (Ω)	Rf (Ω)	Rct (Ω)
Ge	5.736	45.36	95.16
Ge/NC-E	1.447	25.31	56.88
Ge/NC-A	1.368	24.81	49.02

Table S2. Impedance parameters of Ge and Ge/NC electrodes after 100 cycling at fully charge state.