Supporting Information

Superlattice films of semiconducting oxide and rare-earth hydroxide

nanosheets for tunable and efficient photoluminescent energy

transfer

Mingjun Bai, ^a Xiaohe Liu, *^a Takayoshi Sasaki ^b and Renzhi Ma *^b

^a School of Materials Science and Engineering, Central South University, Hunan 410083, P.R. China.

E-mail: liuxh@csu.edu.cn

^b International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.

E-mail: MA.Renzhi@nims.go.jp

Table S1. Elemental analysis results (mass%) of the as-prepared samples

sample	Estimated composition	Elemental analysis	
		Calculated	Measured
LGdH:Eu	(Gd _{0.96} Eu _{0.04}) ₂ (OH) _{5.51} (C ₁₂ H ₂₅ SO ₄) _{0.49} ·1.9H ₂ O	Gd 36.1	Gd 36.1
		Eu 1.8	Eu 1.7
LGdH:Tb	$(Gd_{0.98}Tb_{0.02})_2(OH)_{5.46}(C_{12}H_{25}SO_4)_{0.54} \cdot 2.0H_2O$	Gd 43.3	Gd 43.3
		Tb 1.0	Tb 1.0

Figure S1. Photoluminescence emission spectra for (a) $LGd_{1-x}H:Eu_x$ and (b) $LGd_{1-x}H:Tb_x$ with different doped amount of Eu^{3+} and Tb^{3+} ; (c) SEM images of $LGd_{0.95}H:Tb_{0.05}$.

Figure S2. XRD patterns of LGdH:Eu powder sample after calcined at 1000 °C and 1100 °C for 7 h.

Figure S3. AFM image of $\text{Ti}_{0.87}\text{O}_2^{0.52\text{-}}$ nanosheets.

Figure S4. AFM image of TaO₃⁻ nanosheets.

Figure S5. Typical UV-vis absorption spectra of (a) (LGdH:Eu/Ti_{0.87}O₂^{0.52-})_n and (b) (LGdH:Tb/TaO₃⁻)_n films (n = 2, 5, 10).

Figure S8. Photoluminescence emission spectra of ((LGdH:Eu/Ti_{0.87}O_{2^{0.52.})_m/(LGdH:Tb/TaO₃⁻)_m)_n films (m = 1, 2, 5 and 10, while n = 10, 5, 2 and 1, respectively) under excitation of 220 nm.}