## **Supporting Information**

## DNAzyme Adsorbed Polydopamine@MnO<sub>2</sub> Core-Shell

## Nanocomposites for Enhanced Photothermal Therapy via Self-

## **Activable Suppression of Heat Shock Protein 70**

Yang Xi<sup>1</sup>, Xin Xie<sup>2</sup>, Ying Peng<sup>1</sup>, Peng Liu<sup>1</sup>, Jinsong Ding<sup>\*1</sup> and Wenhu Zhou<sup>\*1, 3</sup>

<sup>1</sup>. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China

<sup>2</sup>. School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China

<sup>3</sup>. Academician Workstation, Changsha Medical University, Changsha 410219, China

\*Email:

zhouwenhuyaoji@163.com



**Figure S1.** Dynamic size change of PDA@MnO<sub>2</sub>/DZ during 7 days storage. No macroscopic aggregate and precipitate were observed after 7 days storage in different media at room temperature, indicating the high stability of PDA@MnO<sub>2</sub>/DZ. Inset: Appearance of the nanoparticles after 7 days storage in different media.



**Figure S2.** Adsorption kinetics of FAM labeled-DZ (100 nM) on PDA@MnO<sub>2</sub> NPs (200  $\mu$ g/mL).



Figure S3. (A) Size distribution and (B)  $\zeta$ -potential of PDA@MnO<sub>2</sub> and PDA@MnO<sub>2</sub>/DZ nanoparticles.



**Figure S4.** Temperature increase curves of different samples under 808 nm irradiation (2 W/cm<sup>2</sup>) for 500 s.



Figure S5. Probing the intracellular Mn<sup>2+</sup> release using 2,7-dichlorodihydrofluorescein

(DCFH-DA) after different treatments. Scare bar: 200 µm.



**Figure S6.** (A) Flow cytometry analysis the uptake of free DZ and PDA@MnO<sub>2</sub>/DZ by M231 cells, and (B) the quantified fluorescence intensity.



**Figure S7.** Hemolysis assay of PDA@MnO<sub>2</sub>/DZ at various concentrations. PBS and ultrapure water were used as the negative and positive control, respectively. Inset: Appearance of different treatments after centrifugation.



**Figure S8.** (A) The dynamic body weight of M231 tumor-bearing mice during different treatments.



**Figure S9.** Hematoxylin and eosin (H&E) staining images of the major organs after different treatments. Scale bar: 200 μm. The treatments were as follows: (1) PBS, (2) PDA@MnO<sub>2</sub>, (3) PDA@MnO<sub>2</sub>/DZ, (4) PDA@MnO<sub>2</sub> + Laser, (5) PDA@MnO<sub>2</sub>/DZ + Laser.



**Figure S10.** Evaluation of the (A) hepatotoxicity (B) and nephrotoxicity of different treatments by measuring the serum levels of ALT, AST, BUN and Cre. The treatments were as follows: (1) PBS, (2) PDA@MnO<sub>2</sub>, (3) PDA@MnO<sub>2</sub>/DZ, (4) PDA@MnO<sub>2</sub> + Laser, (5) PDA@MnO<sub>2</sub>/DZ + Laser.