Supplementary Information

Enhanced field emission performance of MXene-TiO₂ composite film

Bingjun Yang,^{a,c} Jiangtao Chen,^{a,e} Xiaonan Wu,^d Bao Liu,^{a,c} Lingyang Liu,^a

Yu Tang,*b and Xingbin Yan*a,c

^aLaboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid

Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,

Lanzhou 730000, China

^bState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

°Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China

^dInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, P.R. China

^eKey Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China

*Corresponding authors: Xingbin Yan, Yu Tang

E-mail: xbyan@licp.cas.cn, tangyu@lzu.edu.cn.

Figure S1. Schematic preparation representation of MXene-TiO₂ composites with

different structure and content ratio of MXene to TiO_2 .

Figure S2. Digital image of MXene-TiO₂ composites with different structure and content ratio of MXene to TiO₂. From left to right in turn is MXene-TiO₂ (1:1 top),

MXene-TiO₂ (3:1 mixed), and MXene-TiO₂ (1:1 mixed).

Figure S3. (a) TEM image and corresponding SAED pattern (inset) of MXene. (b)

HRTEM image of MXene

Figure S4. (a) SEM image of TiO_2 nanowires. (b) TEM image and corresponding SAED pattern (inset) of TiO_2 nanowires. (c) HRTEM image and (d) EDX spectrum of

TiO₂ nanowires.

Figure S5. The curves of applied rised and falled voltages as the function of the time, the anode-cathode distance is $300 \ \mu m$. The applied voltage across the MXene-TiO₂

(1:1 mixed) composite is lowest than the other two samples.

Figure S6. The curves of the current emission under the applied voltages showed in Figure S5, the anode-cathode distance is $300 \ \mu\text{m}$. The MXene-TiO₂ (1:1 mixed) composite exhibits largest current emission density among the three samples.

Figure S7. Field emission performance of the pure TiO_2 emitter.

Figure S8. The curves of the current emission versus the applied voltages, the anodecathode distance is 300 μ m. It is trying to getting the highest current density from the cross-section of the MXene-TiO₂ (1:1 mixed) composite. During the testing, we have increased the voltages gradually in order to avoid the destroy of the emission sites.

Table S1. The comparation of the field emission performance reported previously for

Cathodes	Turn-on fields	Maximum current density	Refs.
Ti ₃ C ₂ MXene	7.6 V μm ⁻¹ (0.1 mA cm ⁻²) (planar)	0.37 mA cm ⁻² (planar)	1
	/	59 mA cm ⁻² (cross-sectional)	
$Ti_3C_2T_x$ MXene	$3.4 \text{ V } \mu\text{m}^{-1} (0.1 \text{ mA cm}^{-2})$	0.20 mA cm^{-2}	2
Pristine TiO ₂	12.49 V μm ⁻¹ (0.01 mA cm ⁻²)	2 mA cm ⁻²	3
TiO ₂ nanotubes	$102.5 \text{ V } \mu\text{m}^{-1} (0.1 \text{ mA cm}^{-2})$	0.30 mA cm^{-2}	4
TiO ₂ nanotube	$2.44 \text{ V} \ \mu\text{m}^{-1} (0.01 \text{ mA cm}^{-2})$	3.3 mA cm^{-2}	5
MXene-TiO ₂ composites	4.33 V μ m ⁻¹ (0.1 mA cm ⁻²)	1.52 mA cm ⁻² (planar)	This work
	/	289 mA cm ⁻² (cross- sectional)	

MXene and TiO₂ cathodes.

Notes and references

1 J. Chen, B. Yang, Y. D. Lim, W. Duan, Y. Zhao, B. K. Tay and X. Yan, *Nanotechnology*, 2020, **31**, 285701.

2 H. Wu, S. Shen, X. Xu, C. Qiao, X. Chen, J. Li, W. Li and W. Ou-Yang, *IEEE Trans Electron Devices*, 2020, **67**, 5138-5143.

3 W.-D. Zhu, C.-W. Wang, J.-B. Chen, Y. Li and J. Wang, *Appl. Surf. Sci.*, 2014, **301**, 525-529.

4 X. Xu, T. Zhai, M. Shao and J. Huang, *Phys. Chem. Chem. Phys.*, 2012, **14**, 16371-16376.

5 A.-Z. Liao, C.-W. Wang, J.-B. Chen, X.-Q. Zhang, Y. Li and J. Wang, *Mater. Res.* Bull., 2015, **70**, 988-994.