Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Construction of A Double-Walled Carbon Nanoring

Chong Zhao, Fupin Liu, Lai Feng, Mingzhe Nie, Yuxi Lu, Jie Zhang, Chunru Wang, and Taishan Wang*

Figure S1. High resolution MALDI-TOF mass spectrum of [6]CPP⊂[12]CPP.

Figure S2. UV-Vis spectra of [6]CPP, [12]CPP, and [6]CPP \subset [12]CPP films. The thin film was spin-coated (60 µL) on the quartz glass substrate using the samples with the same concentration of 1.0×10^{-3} mol/L in CH₂Cl₂.

Figure S3. Raman spectra of [6]CPP, [12]CPP, and [6]CPP⊂[12]CPP in solid state.

Figure S4. The long and short axes of the ellipse [6]CPP⊂[12]CPP crystalline structure.

Figure S5. Fluorescence titrations of [12]CPP with increasing amounts of [6]CPP in CH₂Cl₂ solution and solid states following titration experiments. (a) Solution state titration and (b) the job plot of [12]CPP (1.5 M) with $0 \sim 1.5$ M [6]CPP. (c) Solid state titration and (d) the job plot of [12]CPP (1.5 M) with $0 \sim 1.5$ M [6]CPP. The λ_{exc} is 385 nm, and the job plots were monitored at 460 nm.

Figure S6. MOs and orbital visualizations of the calculated front 10 vertical excited states.

Figure S7. *I*–*V* profiles of the [6]CPP and [12]CPP with (red) and without (black) photoirradiation.

Figure S8. Nyquist plots before and after the photoirradiation applied to [6]CPP (black), [12]CPP (green), and [6]CPP \subset [12]CPP (red) films. Inset is the simulated equivalent circuit.

Table S1. Simulated impedance results for the plots before and after the photoirradiation. Unit, Ω cm².

	[12]CPP	[6]CPP	[6]CPP⊂[12]CPP
Dark	5.75×10 ⁷	1.18×10 ⁷	4.65×10 ⁶
Photoirradiation	8.78×10 ⁶	3.87×10 ⁶	4.24×10 ⁵

[6]CPP [12]CPP [6]CPP⊂[12]CPP DMF Toluene Ethanol CS_2 C₅H₅CI Ethanol:C H₂Cl₂=1:1

Figure S9. SEM images of [6]CPPs, [12]CPP, and [6]CPPs⊂[12]CPP complexes in DMF solution.

Figure S10. SEM images of [6]⊂[12]CPP complex in different solutions.

Structures_[6]CPP⊂[12]CPP

X-ray diffraction data collection was carried out using a diffractometer (Rigaku Saturn724+) equipped with a CCD collector. The structure was solved by direct methods and refined by SHELXL-2018.^[1] Hydrogen atoms were added geometrically, and refined with a riding model. The crystal data are presented in Table S2.

Figure 2a presents the packing of the [6]CPP \subset [12]CPP molecules in the crystal lattice, the dichloromethane molecules are located in the voids of the [12]CPP molecules, the severely disordered solvent molecules are observed to locate in the center of the [6]CPP molecules, which is masked with SQUEEZE code in the refinement.^[2] The angle between [6]CPP and [12]CPP evaluated with dihedral angle of the least squares planes pass through the [6]CPP/[12]CPP is 26.7(5)°.

Crystal	6CPP⊂12CPP
Formula	$C_{55} H_{38} Cl_2$
Formula weight	769.75
Color, habit	yellow, block
Crystal system	monoclinic
Space group	$P2_1/c$
<i>a</i> , Å	6.2639(6)
b, Å	22.294(2)
<i>c</i> , Å	30.280(4)
a, deg	90
β , deg	95.509(10)
γ, deg	90
Volume, Å ³	4209.0(8)
Z	4
<i>Т</i> , К	170
Radiation (λ, Å)	Mo K-α (0.71073)
Unique data (<i>R_{int}</i>)	9593 (0.2142)
Parameters	515

Table S2. Crystal data_[6]CPP⊂[12]CPP.

Restraints	366
Observed data $(I > 2\sigma(I))$	2971
R_{I}^{a} (observed data)	0.1876
wR_2^b (all data)	0.4620
CCDC NO.	2013130

*^a*For data with $I > 2\sigma(I)$, $R_1 = \frac{\sum ||F_o| - |F_c||}{\sum |F_o|}$. *^b*For all data, $wR_2 = \sqrt{\frac{\sum [w(F_o^2 - F_c^2)^2]}{\sum [w(F_o^2)^2]}}$.

Reference:

- [1] G. Sheldrick, *Acta Cryst. C* **2015,** *71*, 3.
- [2] A. Spek, Acta Cryst. C 2015, 71, 9.