Electronic Supplementary Information (ESI) for

Preparation of polymer nanocomposite via the polymerization of pyrrole:biphenyldisulfonic acid:pyrrole as two-monomer-connected precursor on MoS₂ for electrochemical energy storage

Wonbin Kim,^a Hong-Joon Lee,^a Seung Jo Yoo,^b Cuc Kim Trinh,^a Zubair Ahmad^a and Jae-Suk Lee^{*a}

^aSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea ^bCenter of Research Equipment, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea.

*Corresponding Author. E-mail: jslee@gist.ac.kr

Fig. S1 Raman spectroscopy of P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%), P(Py:BPDSA:Py) and MoS₂, range

from 350 to 450 cm⁻¹.

Fig. S2 FT-IR spectroscopy of P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%), P(Py:BPDSA:Py) and MoS₂. range from 500 to 2000 nm⁻¹. Most of the characterisic peaks related to the polymer, P(Py:BPDSA:Py), were shifted in the composite, P(Py:BPDSA:Py)-MoS₂, demonstrating the Interaction between the MoS₂ and polymer. In the spectra of P(Py:BPDSA:Py)-MoS₂, the characterisic peaks of P(Py:BPDSA:Py) were observed and shifted from 1546 (C=C), 1455 (C-N), 1303 (S-O), 1164 (-SO₃), 1039 (S=O), 788 nm⁻¹ (C-H) to 1552 (C=C), 1463 (C-N), 1311 (S-O), 1174 (-SO₃), 1049 (S=O), 794 nm⁻¹ (C-H).¹⁻³ The Mo-S vibration peak associated with MoS₂ was also observed at about 600 nm⁻¹ in the P(Py:BPDSA:Py)-MoS₂.⁴⁻⁶

1. H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang and Z. Tang, *Adv. Mater.*, 2015, **27**, 1117-1123.

H.-J. Lee, Y.-R. Jo, S. Kumar, S. J. Yoo, J.-G. Kim, Y.-J. Kim, B.-J. Kim and J.-S. Lee, *Nat. Commun.*, 2016, 7, 1-6.

3. R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan and Y. Chen, *ACS Sustainable Chem. Eng.*, 2019, **7**, 11540-11549.

4. N. Maity, A. Mandal and A. K. Nandi, J. Mater. Chem. C, 2017, 5, 12121-12133.

5. S. S. Karade, D. P. Dubal and B. R. Sankapal, *RSC Adv.*, 2016, **6**, 39159-39165.

6. Y. Chen, W. Ma, K. Cai, X. Yang and C. Huang, *Electrochim. Acta*, 2017, **246**, 615-624.

Fig. S3 SEM image of (a) MoS₂, (b) P(Py:BPDSA:Py), (c) P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%). Scale bar, 1 μm. (d) P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%). Scale bar, 500 nm.

Fig. S4 TEM image of (a) P(Py:BPDSA:Py) and (b) P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%).

Fig. S5 (a) TEM image of P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%). Electron energy loss spectroscopy (EELS)

P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%), (b) Molybdenum (Mo), (c) Nitrogen (N), and (d) Sulfur (S).

Fig. S6 Molecular-level ordering of $P(Py:BPDSA:Py)-MoS_2$ (MoS_2 50%). (a) HRTEM image measured along [011] zone axis, (b) Intensity profile of the lines for the white line covered area in figure (a). The fourth-order reflecti on (400) *d* spacing of 0.36 nm is observed in the [100] direction. This is similar to the *d* spacing of the polymer, P(Py:BPDSA:Py), crystal structure.¹

1. H.-J. Lee, Y.-R. Jo, S. Kumar, S. J. Yoo, J.-G. Kim, Y.-J. Kim, B.-J. Kim and J.-S. Lee, *Nat. Commun.*, 2016, **7**,

1-6.

Fig. S7 HRTEM and FFT pattern image of P(Py:MSA)-MoS₂ (MoS₂ 50%).

Fig. S8 N₂ adsorption/desorption isotherms of P(Py:BPDSA:Py) and P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%).

Fig. S9 Galvanostatic charge/discharge measurement of P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%) at various current densities.

Fig. S10 CV curves of P(Py:MSA)-MoS₂ (MoS₂ 50%) at various scan rates.

Fig. S11 Raman spectroscopy of composite, P(Py:BPDSA:Py)-MoS₂ (MoS₂ - 10, 50, 100%). The characteristic peak of MoS₂ appears stronger in the composite, P(Py:BPDSA:Py)-MoS₂ (MoS₂ 100%).

Fig. S12 HRTEM and processed FFT pattern images of P(Py:BPDSA:Py)-MoS₂ (MoS₂ - 10, 100%). As the mass of MoS₂ increases, the crystallinity of the composite decreases. It can be inferred that the increased MoS₂ monolayers may aggregate and interfere with the crystal growth of the polymer.

Fig. S13 Specific capacitances of composites, P(Py:BPDSA:Py)-MoS₂ (MoS₂ - 10, 25, 50, 100%), at various scan rates. As the mass of MoS₂ increases, the specific capacitances of the composite also increase at 2 mV s⁻¹, but the rate capability decreases. it can be inferred that if the crystalline polymer is simply increased, the polymer grows thickly on the MoS₂ even though the crystallinity of the composite increases, which leads to a decrease in the porosity and thus the ion mobility, but rate capability retains because polymer crystal effect to the stability.

Fig. S14 Capacitance retention of composite, P(Py:BPDSA:Py)-MoS₂ (MoS₂ 50%), at a scan rate of 10 mV s⁻¹

Electrode active material	Electrolyte	Scan rate or current density	Specific capacitance (F g ⁻¹ or F cm ⁻³)	Reference
P(Py:BPDSA:Py)/MoS ₂	1 M H ₂ SO ₄	2 mV s ^{-1.}	681 (3-electrodes)	This work
PPy/MoS ₂	1 M KCl	0.5 A g ⁻¹	695 (2-electrodes)	1
PPy/MoS ₂	1 M KCl	1 A g ⁻¹	554 (3-electrodes)	2
PPy/MoS ₂	0.5 M Na ₂ SO ₄	1 A g^{-1}	462 (3-electrodes)	3
PPy/MoS2-DBS	1 M LiCl	0.5 mA/cm ²	325 (3-electrodes)	4
PANI/MoS ₂	1 M H ₂ SO ₄	1 A g ⁻¹	575 (3-electrodes)	5
PANI/MoS ₂	КОН	1 A g^{-1}	510.12 (3-electrodes)	6
PANI/MoS ₂	0.5 M H ₂ SO ₄	1 A g ⁻¹	450 (3-electrodes)	7
PANI/MoS ₂	1 M H ₂ SO ₄	5 mV s ^{-1.}	364 (3-electrodes)	8
PANI/MoS ₂	1 M H ₂ SO ₄	10 A g ⁻¹	245.5 (3-electrodes)	9
PANI/MoS2-NH2	1 M H ₂ SO ₄	0.5 A g ⁻¹	326.4 (3-electrodes)	10
PANI/CNT/MoS ₂	1 M H ₂ SO ₄	1 A g ⁻¹	350 (2-electrodes)	11
PEDOT/MoS ₂	2 M HCl	5 mV s ^{-1.}	452 (3-electrodes)	12

Table S1 The capacitances of the MoS_2 based materials reported in the literatures.

1.	H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang and Z. Tang, <i>Adv. Mater.</i> , 2015, 27 , 1117-1123.
2.	G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou and Z. Lei, <i>J. Power Sources</i> , 2013, 229 , 72-78.
3.	Y. Chen, W. Ma, K. Cai, X. Yang and C. Huang, Electrochim. Acta, 2017, 246, 615-624.
4.	Y. Tian, J. Liu, X. Song, L. Zhao, P. Zhang and L. Gao, <i>Compos. Sci. Technol.</i> , 2020, 197 , 108263.
5.	KJ. Huang, L. Wang, YJ. Liu, HB. Wang, YM. Liu and LL. Wang, Electrochim. Acta, 2013, 109, 587-
594.	

6. S. A. Ansari, H. Fouad, S. Ansari, M. P. Sk and M. H. Cho, J. Colloid Interface Sci., 2017, 504, 276-282.

7. J. Lei, Z. Jiang, X. Lu, G. Nie and C. Wang, *Electrochim. Acta*, 2015, **176**, 149-155.

8. S. Zhang, X. Song, S. Liu, F. Sun, G. Liu and Z. Tan, *Electrochim. Acta*, 2019, **312**, 1-10.

9. J. Chao, J. Deng, W. Zhou, J. Liu, R. Hu, L. Yang, M. Zhu and O. G. Schmidt, *Electrochim. Acta*, 2017, **243**, 98-104.

10. R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan and Y. Chen, *ACS Sustainable Chem. Eng.*, 2019, **7**, 11540-11549.

11. A. K. Thakur, A. B. Deshmukh, R. B. Choudhary, I. Karbhal, M. Majumder and M. V. Shelke, *Materials Science and Engineering: B*, 2017, **223**, 24-34.

12. T. Alamro and M. K. Ram, *Electrochim. Acta*, 2017, **235**, 623-631.