Support Informantion

Accelerating the Activation of Li₂MnO₃ in Li-Rich High-Mn Cathodes to Improve Its Electrochemical Performance

Chao Huang ^{1,2 #}, Zou-Qiang Fang ^{1,2 #}, Zhi-Jie Wang ³, Jian-Wei Zhao⁴, Shi-Xi Zhao^{1*}, Li-jie Ci^{5*}

¹Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

²School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

³Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials,

University of Wollongong, NSW 2522, Australia

⁴Shenzhen HUASUAN Technology Co. Ltd, Shenzhen, 518055, China

⁵State key lab of advanced welding and joining, School of Materials Science and Engineering, Harbin Institute

of Technology (Shenzhen), Shenzhen 518055, China

* Corresponding e-mail: zhaosx@sz.tsinghua.edu.cn (S.X.Zhao); cilijie@hit.edu.cn

[#]Chao Huang and Zou-Qiang Fang contributed equally to this work.

Figure S1. The SEM images of NHM-811 without special appearance was synthesized by solid-state

reactions.

Figure S2. The SEM images of and the EDS mapping of RHM-811@3%LAF.

Fig. S2 show the Mn, Co, Ni, Al, and F homogeneously distribute in RHM-811@3%LAF. The concentration ratio of Mn, Co, and Ni is close to 8:1:1, which is consistent with the previous ICP-AES results.

	Li	Mn	Ni	Со
mg/L	5.588	21.059	2.697	2.626
mol/L	0.8051	0.3833	0.0460	0.0445
Mole rate	1.700	0.809	0.097	0.094

 Table S1. Result of inductively coupled plasma atomic emission spectroscopy

 Table S2. Detail of 1st Charge capacity of all samples

1 st Charge	NHM-	RHM-	RHM-811	RHM-811	RHM-811
capacity	811	811	@1%LAF	@2%LAF	@3%LAF
below 4.5 V	36.4	65.9	80.6	73.3	68.8
$(mAh \cdot g^{-1})$					
above 4.5 V	70.8	208.1	238.6	241.3	237.4
$(mAh \cdot g^{-1})$					
Ratio of	66.0	75.3	74.7	76.7	77.5
above 4.5 V (%)					

Fig.S3 (a) The survey scan and (b) Al 2p, (c) F 1s, (d) Mn 2p, (e) Co 2p, (f) Ni 2p narrow scan of X-ray photoelectron spectroscopy (XPS) of the RHM-811 and RHM-811@3%LAF.

Among them, the two well-defined peaks at 74.1 eV and 685.15 eV can be observed in the spectra, attributed to the Al³⁺ 2p and F⁻ 1s (Fig.S3b); Furthermore, the chemical state of Ni, Co, Mn element in the samples was analyzed by XPS narrow scan of its 2p core-level was displayed in Fig.3c-e. According to the fitting results, the peaks of RHM-811 at 654.2/642.5, 780.4/795.3, 872.6/855.1 eV corresponding to typical Mn⁴⁺, Co³⁺, Ni²⁺ $2p_{1/2}/2p_{3/2}$ peaks, respectively; Meanwhile, the Mn⁴⁺, Co³⁺, Ni²⁺ $2p_{1/2}/2p_{3/2}$ peaks of RHM-811@3%LAF at 654.3/642.6, 780.6/795.6, 872.8/855.1 eV, respectively. Comparing the above results, it can be seen that there is almost no change in the 2p peak position of Ni, Co, and Mn.

Figure S4. The first 5 discharge curves of (1) RHM-811, (2) RHM-811@1%LAF, (3) RHM-811@2% LAF, (4) RHM-811@3% LAF at 0.1 C between 2.0 and 4.8 V.

Figure S5. The discharge curves of (a) RHM-811, (b) RHM-811@1%LAF, (c) RHM-811@2% LAF,

(d) RHM-811@3% LAF at 0.1, 0.2, 0.5, 1.0, 2.0, 3.0 C between 2.0 and 4.8 V.

Figure S6. The 0.5C cycle and rates performance.

Figure S7. The voltage drop curve and the energy density as a function of the number of cycles.

Figure S8. Photograph of 2032 cells being tested in digital high-low temperature test chamber.

NOTE1: The calculation method of the Li⁺ diffusion potential barrier E_a

The relationship between the D_{Li} and temperature T can be expressed by the Arrhenius equation:

$$D_{Li} = D_0 e^{-\frac{E_a}{k_B T}}$$

The D_0 is the diffusion constant, and E_a is the diffusion potential barrier, which depend on the composition and structure of materials, independent of temperature. *k* is the B'oltzmann constant (*k* = 1.3806505(24) × 10⁻²³ J/K). We take the natural logarithm of both sides of Arrhenius equation and get the equation:

$$lnD_{Li} = lnD_0 - \frac{E_a}{k_B T}$$

NOTE2: The calculation method of D_{Li}

In the equivalent circuit (Fig.7g), R_s and R_{ct} represent the ohmic resistance (caused by electrolyte) and the charge transfer resistance at the electrolyte/electrode, which corresponds to the high-frequency intercept at the Z' axis. CPE represents capacitance. W is Warburg element. In addition, the lithium ion diffusion coefficient (D_{Li}) was related to the Li⁺ diffusion process within the electrodes, which can be calculated from the Nyquist plot in low-frequency section, according to the following equation:

$$Z' = R_{ct} + R_S + \sigma \omega^{-1/2} \tag{1}$$

$$D_{Li} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_{Li}^2 \sigma^2}$$
(2)

where ω is the angular frequency, R is the gas constant (8.314 J/(mol·K)), A is the surface area of the electrode(1.13 cm²), T is the absolute temperature, F is the Faraday constant (96485.34 C/mol), n is the number of electrons transferred in the half-reaction for the redox couple, and C_{Li} is the concentration of lithium ion (1*10⁻³ mol/cm⁻³). σ is the Warburg factor that is relative to $Z' vs. \omega^{-1/2}$

and can be obtained from the slope of the lines in Fig. 7h. The lithium ion diffusion coefficients are calculated by equation (2).

	RHM-811	RHM-811@3%LAF
$R_{s/\Omega}$	2.055	3.895
$R_{ct / \Omega}$	1280	230
$D_{Li / cm^2 s^{-1}}$	6.92×10 ⁻¹⁵	1.11×10 ⁻¹⁴

Table S3. The fitted results from EIS.