Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2021

Supporting Information for
A New Strategy for Achieving High K* Storage Capacity with Fast Kinetics:

Realizing Covalent Sulfur-Rich Carbon by Phosphorous Doping

Wenrui Wei,? Yulong Zheng,® Minghua Huang,? Jing Shi,? Lei Li,> Zhicheng Shi,* Shuai Liu?

and Huanlei Wang?*,

@ School of Materials Science and Engineering, Ocean University of China, Qingdao 266100,
People’s Republic of China.

b Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology
(EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, People’s Republic
of China.

¢ New Energy R&D Center/New Energy Powertrain Dept, Weichai Power Co.,Ltd, Weifang
261061, People’s Republic of China.

*Corresponding author.

E-mail:huanleiwang@gmail.com (Prof. H. Wang)



Figures

Fig. S1 Representative SEM image of (a, b) magnesium phosphate pentahydrate dispersed in

carrageenan, and (c,d) the PSMC sample before washing with HCI.
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Fig. S2 The XRD pattern of PSMC without acid-treatment. (As evidenced in the XRD

spectrum, the generation of MgO is due to the decomposition of magnesium phosphate
pentahydrate during the carbonization process at 1200°C. There is ester-sulfate and a slight
amount of Ca?' in carrageenan, the decomposition of ester-sulfate achieved S-doped while

partially binding with Ca?* to form CaS.")



Fig. S3 Representative SEM images of SMC.
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Fig. S4 Representative SEM images of PSMC.
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Fig. S5 Scheme illustrating the calculation of R values based on XRD patterns for (a) SMC
and (b) PSMC.
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Fig. S6 Curve fitting results for the Raman spectra of (a) SMC and (b) PSMC.
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Fig. S7 The XPS survey spectra of SMC and PSMC.
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Fig. S8 High-resolution (a) C 1s and (b) O 1s XPS spectra for SMC.
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Fig. S9 CV curves of the SMC electrode at a scan rate of 0.1 mV s-!
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Fig. S10 Galvanostatic discharge-charge profiles at a current density of 0.1 A g! of (a) SMC

and (b) CMK-3.
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Fig. S11 (a) N, adsorption-desorption isotherm and (b) the corresponding DFT pore size

Relative Pressure (P/P )

distribution of CMK-3.
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Fig. S12 Galvanostatic discharge-charge profiles of (a) PSMC, (b) SMC, (c) CMK-3 at 0.1 A

¢! and the cut-off voltage of 2.0 V (inset is the first cycle); (d) Rate capability of PSMC, SMC,
and CMK-3.
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Fig. S13 Long cycling performance of PSMC at 2.0 A g'.
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Fig. S14 (a) Nyquist plots of the SMC electrode, analyzed at initial and after various cycles.

(b) The equivalent electrical circuit of the EIS fitting (R, is the internal resistance, CPE; and
CPE, are constant phase elements, R, represents charge transfer resistance, R, represents the

resistance of potassium transport through SEI layer, and Zj is Warburg impedance).
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Fig. S15 (a) CV curves of SMC at various scan rates. (b) Capacitive contribution for SMC at
1.0 mV s



Galvanostatic intermittent titration technique (GITT)

The first cycle is tested by GCD with a current density of 0.1A g!, and the second cycle is
examined by GITT. The specific test condition is to apply a constant current of 0.03 A g! pulse
for 30 minutes to a PIB half-cell with PSMC/SMC as the anode, and then relax for 3 hours. The
K™ diffusion coefficients can be quantitatively calculated according to GITT curves by using the

following Equation:

A ’
T\ M S \ AE,

where m and Mjp are the mass (g) and molar weight (g mol™!) of active material, and S is the

geometric contact area (cm?) between electrolyte and electrode, V3 is the molar volume (cm?3
mol") of active materials, and 7 is current pulse duration (s). 4E; and 4E, are the potential change

in a complete pulse-elaxation procedure which can be obtained from the Figure S14.



current pulse

Voltage (V)

Voltage (V vs K/K")
o

N
o
N

0.5

0-0 L L DL L) L L L
0 20 40 60 80 O 20 40 60 80 100
Depth of Potassiation (%) Depth of Depotassiation (%)
Fig. S16 (a) The schematic illustration for the GITT calculation method. (b) GITT curves for

SMC and PSMC.
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Fig. S17 Deconvolution of K 2p peaks for PSMC at various discharge/charge voltages, during
cycle 1 and cycle 2: (a) pristine; (b) discharge to 1.0V (cycle 1); (c¢) discharge to 0.6V (cycle
1); (d) discharge to 0.25V (cycle 1); (e) discharge to 0.001V (cycle 1); (f) charge to 1.0V (cycle
1); (g) charge to 1.6V (cycle 1); (h) charge to 3.0V (cycle 1); (i)discharge to 0.001V (cycle 2);
(j) charge to 3.0V (cycle 2).
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Fig. S18 Deconvolution of S 2p peaks for PSMC at various discharge/charge voltages, during
cycle 1 and cycle 2: (a) pristine; (b) discharge to 1.0V (cycle 1); (¢) discharge to 0.6V (cycle
1); (d) discharge to 0.25V (cycle 1); (e) discharge to 0.001V (cycle 1); (f) charge to 1.0V (cycle

1); (g) charge to 1.6V (cycle 1); (h) charge to 3.0V (cycle 1); (i)discharge to 0.001V (cycle 2);
(j) charge to 3.0V (cycle 2).
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Fig. S19 Deconvolution of P 2p peaks for PSMC at various discharge/charge voltages, during
cycle 1 and cycle 2: (a) pristine; (b) discharge to 1.0V (cycle 1); (¢) discharge to 0.6V (cycle
1); (d) discharge to 0.25V (cycle 1); (e) discharge to 0.001V (cycle 1); (f) charge to 1.0V (cycle
1); (g) charge to 1.6V (cycle 1); (h) charge to 3.0V (cycle 1); (i)discharge to 0.001V (cycle 2);
(j) charge to 3.0V (cycle 2); (k) Ex-situ XPS spectra of P 2p for PSMC.



Fig. S20 Side view of the structure of (a) Graphene, (b) S-Graphene and (c) P/S-Graphene.
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Fig. S21 Electrochemical performance of NPC as PIBs cathode in half cells. (a) Galvonastatic
discharge-charge profiles of NPC at 0.1 A g!; (b) Rate capability of NPC. (The preparation
process of NPC sample is as follows: Typically, 2.0 g potassium hydroxide and 10.0 g sodium
bicarbonate were dissolved in deionized water, and then 2.0 g methyl cellulose and 2.0 g urea

were added into the solution with continuously stirred for 4 hours. After freeze-drying, the

precursor was carbonized under N, (200 ° C for 2 hours and 800 ° C for 4 hours), washed by

2M HCI and H,O, and dried at 80 ° C in vacuum oven). 2
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Fig. S22. Ragone plots of the PICs with different anode to cathode mass ratios (1:2, 1:1 and
2:1).
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Figure S23. The long-cycle performance of PIC at 50 A g'!.



Table S1. Textural properties and surface chemistry of SMC and PSMC.

Textural Properties Surface Chemistry (XPS)
Sample ¢y . PoreVoume(%) ¢ o s p e
m?g!  emdgl! Vo Voorm Wt%  wt%  wt%  wt%
SMC 856 1.49 38.50 61.50 8584 7.05 7.11 — 150
PSMC 961 3.15 12.58 8742 7636 6.08 1648 1.08 1.67

Table S2. Carbon bonding analysis of SMC and PSMC samples.

Concentration (%/at %)

Binding Energy (eV) Carbon Bonding
SMC PSMC
284.4 C=C 48.62/44.50 46.07/40.20
285.0 C-C 20.29/18.57 24.49/21.37
285.8 C-S 9.27/8.48 12.44/10.86
286.8 C-O 8.61/7.88 6.60/5.76
2893 C=0 13.21/12.09 9.19/8.02
283.4 C-P — 1.20/1.05
Sp?/(Sp*+Sp?) 70.56 65.29




Table S3. Comparisons of electrochemical performance of PSMC with other carbon anodes

for PIBs.

Anode Materials Rate capability Cycling Performance

449 mAh g'lat0.1 A g,
407 mAh g at0.2 A g,
355 mAh g at 0.5 A g,

217.1 mAh g! after 1000
PSMC (This work) 299 mAhg'lat1.0 A g,

cycles at 2 A g'!
233 mAh glat2.0A g,
136 mAh g at 5.0 A g!

98 mAh g at 10.0 A g!

306.8 mAh g'!' at 0.05 A g,

279.2mAh g'lat0.1 A g,

188.8 mAh g'! after 200
CFM-S30NG 3 269.1 mAhg'lat02A g,

lesat 1 A g'!
245.0 mAhg'lat0.5A g, e &

222 7mAhg'lat1.0A g'!

435 mAh g'at0.05 A g,

297 mAh glat0.1 Agl,
229 mAh g after 500
S-RGO-600 * 282 mAh g at 0.25 A g,
cyclesat 1 A g!
250 mAh glat0.5A g!,

224 mAhglat1.0 A g!

356 mAh g'at0.1 A g,
260 mAh g at 0.2A g,
. 220 mAh glat0.5A g, 168 mAh g'! after 1000
SNCNFAS 198 mAhg'lat1.0A g, cyclesat2 A g'!
168 mAh g''at2.0 A g!,

112mAhglat5.0A g,

240 mAh g at0.05 A g, 141 mAh g'! after 2000
CNFF ¢

236 mAh g at 0.08A g, cyclesat 1 A g'!




214 mAhg'lat0.1 Ag',
202 mAhglat02A g!,
181 mAh g'at0.5A g,
164 mAhglat1.0A g,

409 mAhg'lat0.1 Agl,

322mAhg'lat02A g!,
120 mAh g! after 500
H-0S-C7 255mAh glat0.5 A g,
cyclesat2 A g'!
185 mAhglat1.0 A g,

135mAhg' at2.0 A g!

233.7mAhg'at05A g,

208.7mAh g'lat1.0 A g,
171.5 mAh g'! after 500
CAPC1100 8 196.6 mAhg'lat1.5A g,

lesat 1.5 A g!
189.7mAh g'at2.0A g'! cycles a g

1773 mAh g'at2.5A g'!

340 mAh g'at0.1 A g,
329 mAh g'at02 A g,
306 mAh g at 0.5 A g,
287 mAh g'lat0.8 A g,

281 mAh g after 5500
NOC@GF ° 272 mAh glat 1.0 A g,

cyclesat 1.0 A g!
186 mAhg'lat2.0A g,
151 mAh g'at3.0A g,
134 mAhg'lat4.0 A g,

123 mAh g'at5.0A g,

175 mAh g' at 0.05 A g'!,

150 mAh g'at0.1 A g,

196 mAh g! after 900
SC-500 10 118 mAh g at 0.2 A g,

03 AL ol ai 04 A o cycles at 0.05 A g!
glat04 A gl,

70 mAh g'at0.8 A gl,




309 mAh g'lat0.1 A g,

270 mAh g'lat 0.2 A g,
244 mAh g! after 840
CDs @ rGO ! 250 mAh g'at0.3 A g,

lesat 0.2 A g'!
227mAh glat04 A gl e ¢

221 mAhglat0.5Ag!,

122.5mAh g'at 0.02 A g,

104.3 mAh g at 0.05 A g,

118.5 mAh g'! after 200
KTO/C-700 12 92.3 mAh g at 0.1 A g,

8.6 mAh o 402 A o cycles at 0.025 A ¢!
.6mAhg'lat0.2A gl,

65.1 mAh g'at0.5A g,
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