Supporting Information

Fluorescent Nanocomposites Based on Gold Nanoclusters for Metal Ion Detection and White Light Emitting Diode

Yongjie Zhang,^{a, b} Ning Feng,^a Shujin Zhou,^a Xia Xin^{a*}

^a Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School

of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China

^b School of Chemical Engineering and Technology, Collaborative Innovation

Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University,

Tianjin, 300072, China

^{*}Author to whom correspondence should be addressed, E-mail: <u>xinx@sdu.edu.cn</u> Phone: +86-531-88363597.

Figure S1. PL spectra of MPA-AuNCs solution.

Figure S2. PL spectra of MPA-AuNCs solution with addition of different concentrations of Zn^{2+} .

Figure S3. Photographs of the MPA-AuNCs under 365 nm UV light with addition of 2M-IM ($c_{2M-IM} = 6$ mM) and different concentrations of Zn²⁺ (left to right: $c_{Zn2+} = 3$, 2.5, 2.25, 2, 1.75, 1.5, 1.25, 1, 0.5 mM).

Figure S4. PL spectra of MPA-AuNCs solution with addition of different concentrations of 2M-IM.

Figure S5. EDS of AuNCs@ZnS QDs.

element	wt%	atomic %
С	41.73	77.20
0	4.97	6.91
S	2.65	1.83
Cu	32.22	11.27
Zn	3.14	1.07
Au	15.28	1.72
summary:	100.00	100.00

 Table S1. Elemental contents of AuNCs@ZnS QDs.

Figure S6. HR-TEM image of ZIF-8 ($c_{Zn2+}=1 \text{ mM}$, $c_{2M-IM}=6 \text{ mM}$).

Figure S7. FT-IR spectra of ZIF-8 and AuNCs@ZIF-8.

Figure S8. UV-vis absorption spectra of MPA-AuNCs and that with addition of Zn^{2+} . The black line displays the UV-vis spectrum of MPA-AuNCs instantly after addition of Zn^{2+} and 2M-IM.

Figure S9. Time-dependent PL spectra ($\lambda_{Ex} = 365 \text{ nm}$) of MPA-AuNCs after addition of 1 mM Zn²⁺ and 6 mM 2M-IM.

Figure S10. PL spectra ($\lambda_{Ex} = 365 \text{ nm}$) of AuNCs@ZnS QDs with addition of (a) Fe³⁺ (150 µM) and (b) Pb²⁺ (150 µM) in the presence of different other metal ions ($c = 150 \mu$ M).

Figure S11. Change of PL intensity of AuNCs@ZnS with addition of increasing amount of Pb²⁺.

Table S2.	Limit of	detection	of AuNO	Cs@ZnS	for Fe ³⁺	and I	Pb^{2+} i	in comp	parison	with
other previo	ously rep	orted fluo	rimetric	chemical	sensors					

Limit of detection (µM)	Selectivity	reference
38	Fe ³⁺	1
19	Fe ³⁺	2
49	Fe ³⁺	3
24.8	Fe ³⁺	4
5.37	Fe ³⁺	This work
3.3	Pb ²⁺	5
0.8	Pb ²⁺	6
1.5	Pb ²⁺	7
0.25	Pb ²⁺	8
0.26	Pb ²⁺	This work

Figure S12. FT-IR spectra of AuNCs@ZnS QDs and AuNCs@ZnS QDs/Fe³⁺.

Figure S13. UV-vis absorption spectra of AuNCs@ZnS and that with addition of 150 μ M Pb²⁺. Inset: photographs of AuNCs@ZnS (left) and that with addition of 150 μ M Pb²⁺ (right).

References

[1] Ma, TT, Zhao, X, Matsuo, Y, Song, J, Zhao, R, Faheem, M, Chen, M, Zhang, YF, Tian, YY, Zhu, GS. Fluorescein-based fluorescent porous aromatic framework for Fe³⁺ detection with high sensitivity, J. Mater. Chem. C 2019, 7, 2327-2332.

[2] Bardhan, S, Roy, S, Chanda, D, Ghosh, S, Mondal, D, Das, S, Das, S. Nitrogenous carbon dot decorated natural microcline: an ameliorative dual fluorometric probe for Fe^{3+} and Cr^{6+} detection. Dalton Trans. 2020, 49, 10554-10566.

[3] Yao, J, Liu, Y, Yang, L, Dou, A, Hou, C, Xu, Q, Huang, B, Zhu, A. Novel alkaline earth metal-organic frameworks with thiophene groups for selective detection of Fe³⁺. CrystEngComm, 2020, 22, 5970-5979.

[4] Shen, J, Wang, Z, Sun, D, Liu, G, Yuan, S. Mohamedally Kurmoob Xin, X. Selfassembly of water-soluble silver nanoclusters: superstructure formation and morphological evolution. Nanoscale, 2017, 9, 19191-19200.

[5] Luan, W, Yang, H, Wan, Z, Yuan, B, Yu, X, Tu, S. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead (II). J Nanopart Res 2012, 14, 762.

[6] Liu, T, Wan, X, Yao, Y. Dual sensitive and selective sensor for Pb²⁺ and Al³⁺ with distinctive fluorescence response. Sensors and Actuators B 2018, 254, 1094-1100.

[7] Ma, L, Li, H, Wu, Y. A pyrene-containing fluorescent sensor with high selectivity for lead (II) ion in water with dual illustration of ground-state dimer. Sensors and Actuators B 2009, 143, 25-29.

[8] M. L, Jiang, X, Wu, H, Lu, H, Li, H, Xu, H, Zang, S, Mak, T. Dual functional probe for "turn-on" fluorescence response of Pb²⁺ and colorimetric detection of Cu²⁺ based on a rhodamine derivative in aqueous media. Dalton Trans., 2015, 44, 17326-17334.